STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KNOP1Lysine rich nucleolar protein 1. (458 aa)    
Predicted Functional Partners:
IQCK
IQ motif containing K.
   
  
 0.752
ZNF106
Zinc finger protein 106; RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism.
   
 
 0.706
ZFP62
Zinc finger protein 62 homolog; May play a role in differentiating skeletal muscle.
   
   0.623
PUM3
Pumilio homolog 3; Inhibits the poly(ADP-ribosyl)ation activity of PARP1 and the degradation of PARP1 by CASP3 following genotoxic stress. Binds to double-stranded RNA or DNA without sequence specificity. Involved in development of the eye and of primordial germ cells (By similarity).
   
   0.596
STAU1
Double-stranded RNA-binding protein Staufen homolog 1; Binds double-stranded RNA (regardless of the sequence) and tubulin. May play a role in specific positioning of mRNAs at given sites in the cell by cross-linking cytoskeletal and RNA components, and in stimulating their translation at the site.
   
   0.588
NSD2
Histone-lysine N-methyltransferase NSD2; Histone methyltransferase with histone H3 'Lys-27' (H3K27me) methyltransferase activity forming trimethylated 'Lys-27' (H3K27me3). Isoform 2 may act as a transcription regulator that binds DNA and suppresses IL5 transcription through HDAC recruitment.
   
   0.546
DRG1
Developmentally-regulated GTP-binding protein 1; Catalyzes the conversion of GTP to GDP through hydrolysis of the gamma-phosphate bond in GTP. Appears to have an intrinsic GTPase activity that is stimulated by ZC3H15/DFRP1 binding likely by increasing the affinity for the potassium ions. When hydroxylated at C-3 of 'Lys-22' by JMJD7, may bind to RNA and play a role in translation. Binds to microtubules and promotes microtubule polymerization and stability that are required for mitotic spindle assembly during prophase to anaphase transition. GTPase activity is not necessary for these mi [...]
   
  
 0.542
NMNAT1
Nicotinamide/nicotinic acid mononucleotide adenylyltransferase 1; Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP. Can also use the deamidated form; nicotinic acid mononucleotide (NaMN) as substrate with the same efficiency. Can use triazofurin monophosphate (TrMP) as substrate. Also catalyzes the reverse reaction, i.e. the pyrophosphorolytic cleavage of NAD(+). For the pyrophosphorolytic activity, prefers NAD(+) and NaAD as substrates and degrades NADH, nicotinic acid adenine dinucleotide phosphate (NHD) and nicotinamide guanine dinucleotide (NGD) less [...]
   
   0.528
C8orf33
UPF0488 protein C8orf33; Chromosome 8 open reading frame 33; Belongs to the UPF0488 family.
   
   0.521
KRTAP19-8
Keratin-associated protein 19-8; In the hair cortex, hair keratin intermediate filaments are embedded in an interfilamentous matrix, consisting of hair keratin- associated proteins (KRTAP), which are essential for the formation of a rigid and resistant hair shaft through their extensive disulfide bond cross-linking with abundant cysteine residues of hair keratins. The matrix proteins include the high-sulfur and high-glycine-tyrosine keratins; Belongs to the KRTAP type 19 family.
      
 0.517
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (34%) [HD]