STRINGSTRING
FUS protein (human) - STRING interaction network
"FUS" - RNA-binding protein FUS in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
FUSRNA-binding protein FUS; Binds both single-stranded and double-stranded DNA and promotes ATP-independent annealing of complementary single- stranded DNAs and D-loop formation in superhelical double-stranded DNA. May play a role in maintenance of genomic integrity; Belongs to the RRM TET family (526 aa)    
Predicted Functional Partners:
CDC5L
Cell division cycle 5-like protein; DNA-binding protein involved in cell cycle control. May act as a transcription activator. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR); Myb/SANT domain containing (802 aa)
     
  0.998
HNRNPD
Heterogeneous nuclear ribonucleoprotein D0; Binds with high affinity to RNA molecules that contain AU-rich elements (AREs) found within the 3’-UTR of many proto- oncogenes and cytokine mRNAs. Also binds to double- and single- stranded DNA sequences in a specific manner and functions a transcription factor. Each of the RNA-binding domains specifically can bind solely to a single-stranded non-monotonous 5’-UUAG-3’ sequence and also weaker to the single-stranded 5’-TTAGGG-3’ telomeric DNA repeat. Binds RNA oligonucleotides with 5’-UUAGGG-3’ repeats more tightly than the telomeric single-s [...] (355 aa)
     
  0.991
TNPO1
Transportin-1; Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis [...] (898 aa)
     
 
  0.987
SRSF10
Serine/arginine-rich splicing factor 10; Splicing factor that in its dephosphorylated form acts as a general repressor of pre-mRNA splicing. Seems to interfere with the U1 snRNP 5’-splice recognition of SNRNP70. Required for splicing repression in M-phase cells and after heat shock. Also acts as a splicing factor that specifically promotes exon skipping during alternative splicing. Interaction with YTHDC1, a RNA-binding protein that recognizes and binds N6-methyladenosine (m6A)-containing RNAs, prevents SRSF10 from binding to its mRNA-binding sites close to m6A-containing regions, lead [...] (262 aa)
     
  0.982
HNRNPA3
Heterogeneous nuclear ribonucleoprotein A3; Plays a role in cytoplasmic trafficking of RNA. Binds to the cis-acting response element, A2RE. May be involved in pre-mRNA splicing; RNA binding motif containing (378 aa)
     
0.980
SF3A2
Splicing factor 3A subunit 2; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex; Belongs to the SF3A2 family (464 aa)
     
  0.975
SRSF2
Serine/arginine-rich splicing factor 2; Necessary for the splicing of pre-mRNA. It is required for formation of the earliest ATP-dependent splicing complex and interacts with spliceosomal components bound to both the 5’- and 3’-splice sites during spliceosome assembly. It also is required for ATP-dependent interactions of both U1 and U2 snRNPs with pre- mRNA. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5’- and 3’-splice site binding components, U1 snRNP and U2AF. Binds to purine-rich RNA sequences, either 5’-AGSAGAGTA-3’ (S=C or G) or [...] (221 aa)
     
  0.975
HNRNPA1
Heterogeneous nuclear ribonucleoprotein A1; Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and may modulate splice site selection. May bind to specific miRNA hairpins; RNA binding motif containing (372 aa)
     
0.970
HNRNPC
Heterogeneous nuclear ribonucleoproteins C1/C2; Binds pre-mRNA and nucleates the assembly of 40S hnRNP particles. Interacts with poly-U tracts in the 3’-UTR or 5’-UTR of mRNA and modulates the stability and the level of translation of bound mRNA molecules. Single HNRNPC tetramers bind 230-240 nucleotides. Trimers of HNRNPC tetramers bind 700 nucleotides. May play a role in the early steps of spliceosome assembly and pre-mRNA splicing. N6- methyladenosine (m6A) has been shown to alter the local structure in mRNAs and long non-coding RNAs (lncRNAs) via a mechanism named ’m(6)A-switch’, f [...] (306 aa)
     
  0.970
PTBP1
Polypyrimidine tract-binding protein 1; Plays a role in pre-mRNA splicing and in the regulation of alternative splicing events. Activates exon skipping of its own pre-mRNA during muscle cell differentiation. Binds to the polypyrimidine tract of introns. May promote RNA looping when bound to two separate polypyrimidine tracts in the same pre-mRNA. May promote the binding of U2 snRNP to pre-mRNA. Cooperates with RAVER1 to modulate switching between mutually exclusive exons during maturation of the TPM1 pre-mRNA. Represses the splicing of MAPT/Tau exon 10. In case of infection by picornav [...] (557 aa)
     
  0.969
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (10%) [HD]