STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PLAAT2Phospholipase A and acyltransferase 2; Exhibits both phospholipase A1/2 and acyltransferase activities. Shows phospholipase A1 (PLA1) and A2 (PLA2) activity, catalyzing the calcium-independent release of fatty acids from the sn-1 or sn-2 position of glycerophospholipids. For most substrates, PLA1 activity is much higher than PLA2 activity. Shows O- acyltransferase activity, catalyzing the transfer of a fatty acyl group from glycerophospholipid to the hydroxyl group of lysophospholipid. Shows N-acyltransferase activity, catalyzing the calcium-independent transfer of a fatty acyl group a [...] (162 aa)    
Predicted Functional Partners:
CLPB
Caseinolytic peptidase B protein homolog; May function as a regulatory ATPase and be related to secretion/protein trafficking process.
  
 
 0.679
GRPEL1
GrpE protein homolog 1, mitochondrial; Essential component of the PAM complex, a complex required for the translocation of transit peptide-containing proteins from the inner membrane into the mitochondrial matrix in an ATP-dependent manner (By similarity). Seems to control the nucleotide-dependent binding of mitochondrial HSP70 to substrate proteins. Belongs to the GrpE family.
  
 
 0.588
GRPEL2
GrpE protein homolog 2, mitochondrial; Essential component of the PAM complex, a complex required for the translocation of transit peptide-containing proteins from the inner membrane into the mitochondrial matrix in an ATP-dependent manner. Seems to control the nucleotide-dependent binding of mitochondrial HSP70 to substrate proteins. Stimulates ATPase activity of mt-HSP70. May also serve to modulate the interconversion of oligomeric (inactive) and monomeric (active) forms of mt-HSP70 (By similarity); Belongs to the GrpE family.
  
 
 0.588
DNAJC10
DnaJ homolog subfamily C member 10; Endoplasmic reticulum disulfide reductase involved both in the correct folding of proteins and degradation of misfolded proteins. Required for efficient folding of proteins in the endoplasmic reticulum by catalyzing the removal of non-native disulfide bonds formed during the folding of proteins, such as LDLR. Also involved in endoplasmic reticulum-associated degradation (ERAD) by reducing incorrect disulfide bonds in misfolded glycoproteins recognized by EDEM1. Interaction with HSPA5 is required its activity, not for the disulfide reductase activity, [...]
  
 0.566
HSP90B1
Endoplasmin; Molecular chaperone that functions in the processing and transport of secreted proteins (By similarity). When associated with CNPY3, required for proper folding of Toll-like receptors (By similarity). Functions in endoplasmic reticulum associated degradation (ERAD). Has ATPase activity (By similarity). Belongs to the heat shock protein 90 family.
   
 
 0.526
ISCU
Iron-sulfur cluster assembly enzyme ISCU, mitochondrial; Scaffold protein for the de novo synthesis of iron-sulfur (Fe-S) clusters within mitochondria, which is required for maturation of both mitochondrial and cytoplasmic [2Fe-2S] and [4Fe-4S] proteins. First, a [2Fe-2S] cluster is transiently assembled on the scaffold protein ISCU. In a second step, the cluster is released from ISCU, transferred to a glutaredoxin GLRX5, followed by the formation of mitochondrial [2Fe-2S] proteins, the synthesis of [4Fe-4S] clusters and their target-specific insertion into the recipient apoproteins. C [...]
  
 
 0.523
DNAJC15
DnaJ homolog subfamily C member 15; Negative regulator of the mitochondrial respiratory chain. Prevents mitochondrial hyperpolarization state and restricts mitochondrial generation of ATP (By similarity). Acts as an import component of the TIM23 translocase complex. Stimulates the ATPase activity of HSPA9.
    
 
 0.522
TRAP1
Heat shock protein 75 kDa, mitochondrial; Chaperone that expresses an ATPase activity. Involved in maintaining mitochondrial function and polarization, downstream of PINK1 and mitochondrial complex I. Is a negative regulator of mitochondrial respiration able to modulate the balance between oxidative phosphorylation and aerobic glycolysis. The impact of TRAP1 on mitochondrial respiration is probably mediated by modulation of mitochondrial SRC and inhibition of SDHA; Belongs to the heat shock protein 90 family.
   
 
 0.510
TSC1
Hamartin; In complex with TSC2, inhibits the nutrient-mediated or growth factor-stimulated phosphorylation of S6K1 and EIF4EBP1 by negatively regulating mTORC1 signaling. Seems not to be required for TSC2 GAP activity towards RHEB. Implicated as a tumor suppressor. Involved in microtubule-mediated protein transport, but this seems to be due to unregulated mTOR signaling (By similarity). Acts as a co- chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1. Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 [...]
   
 
 0.510
HSP90AA1
Heat shock protein HSP 90-alpha; Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a ra [...]
   
 
 0.510
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: medium (50%) [HD]