STRINGSTRING
EIF2S1 protein (human) - STRING interaction network
"EIF2S1" - Eukaryotic translation initiation factor 2 subunit 1 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
EIF2S1Eukaryotic translation initiation factor 2 subunit 1; Functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form a 43S pre-initiation complex. Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF-2 and release of an eIF-2- GDP binary complex. In order for eIF-2 to recycle and catalyze another round of initiation, the GDP bound to eIF-2 must exchange with GTP by way of a reaction catalyzed b [...] (315 aa)    
Predicted Functional Partners:
EIF2S2
Eukaryotic translation initiation factor 2 subunit 2; eIF-2 functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form a 43S preinitiation complex. Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF-2 and release of an eIF-2-GDP binary complex. In order for eIF-2 to recycle and catalyze another round of initiation, the GDP bound to eIF-2 must exchange with GTP by way of a reaction catalyz [...] (333 aa)
     
  0.999
EIF2S3
Eukaryotic translation initiation factor 2 subunit 3; As a subunit of eukaryotic initiation factor 2 (eIF2), involved in the early steps of protein synthesis. In the presence of GTP, eIF2 forms a ternary complex with initiator tRNA Met-tRNAi and then recruits the 40S ribosomal complex, a step that determines the rate of protein translation. This step is followed by mRNA binding to form the 43S pre-initiation complex. Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In o [...] (472 aa)
   
  0.999
EIF2AK4
eIF-2-alpha kinase GCN2; Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2-alpha/EIF2S1) on ’Ser-52’ in response to low amino acid availability. Plays a role as an activator of the integrated stress response (ISR) required for adapatation to amino acid starvation. Converts phosphorylated eIF- 2-alpha/EIF2S1 either to a competitive inhibitor of the translation initiation factor eIF-2B, leading to a global protein synthesis repression, and thus to a reduced overall utilization of amino acids, or to a transla [...] (1649 aa)
     
  0.999
EIF3B
Eukaryotic translation initiation factor 3 subunit B; RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2-GTP-methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termin [...] (814 aa)
     
  0.999
RPS8
Ribosomal protein S8; Belongs to the eukaryotic ribosomal protein eS8 family (208 aa)
     
  0.999
RPS4X
Ribosomal protein S4, X-linked; Belongs to the eukaryotic ribosomal protein eS4 family (263 aa)
     
    0.999
RPS3
40S ribosomal protein S3; Involved in translation as a component of the 40S small ribosomal subunit. Has endonuclease activity and plays a role in repair of damaged DNA. Cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity and cleaves supercoiled DNA more efficiently than relaxed DNA. Displays high binding affinity for 7,8-dihydro-8-oxoguanine (8-oxoG), a common DNA lesion caused by reactive oxygen species (ROS). Has also been shown to bind with similar affinity to intact and damaged DNA. Stimulates the N-glycosylase activity of the base excision protein [...] (259 aa)
   
  0.998
RPS12
Ribosomal protein S12 (132 aa)
     
    0.998
RPS6
40S ribosomal protein S6; May play an important role in controlling cell growth and proliferation through the selective translation of particular classes of mRNA; S ribosomal proteins (249 aa)
     
  0.998
RPS11
Ribosomal protein S11; Belongs to the universal ribosomal protein uS17 family (158 aa)
     
  0.998
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (6%) [HD]