STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
NARS1Asparagine--tRNA ligase, cytoplasmic; Catalyzes the attachment of asparagine to tRNA(Asn) in a two- step reaction: asparagine is first activated by ATP to form Asn-AMP and then transferred to the acceptor end of tRNA(Asn). In addition to its essential role in protein synthesis, acts as a signaling molecule that induced migration of CCR3-expressing cells. (548 aa)    
Predicted Functional Partners:
EPRS1
Bifunctional glutamate/proline--tRNA ligase; Multifunctional protein which is primarily part of the aminoacyl-tRNA synthetase multienzyme complex, also know as multisynthetase complex, that catalyzes the attachment of the cognate amino acid to the corresponding tRNA in a two-step reaction: the amino acid is first activated by ATP to form a covalent intermediate with AMP and is then transferred to the acceptor end of the cognate tRNA. The phosphorylation of EPRS1, induced by interferon-gamma, dissociates the protein from the aminoacyl-tRNA synthetase multienzyme complex and recruits it [...]
  
 
 0.998
GATB
Glutamyl-tRNA(Gln) amidotransferase subunit B, mitochondrial; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in the mitochondria. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu-tRNA(Gln). Belongs to the GatB/GatE family. GatB subfamily.
 
 0.996
QRSL1
Glutamyl-tRNA(Gln) amidotransferase subunit A, mitochondrial; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in the mitochondria. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu-tRNA(Gln).
 
 0.976
YARS1
Tyrosine--tRNA ligase, cytoplasmic, N-terminally processed; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family.
  
 
 0.966
IARS1
Isoleucine--tRNA ligase, cytoplasmic; Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA.
  
 
 0.965
GATC
Glutamyl-tRNA(Gln) amidotransferase subunit C, mitochondrial; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in the mitochondria. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu-tRNA(Gln). Belongs to the GatC family.
     
 0.957
LARS1
Leucine--tRNA ligase, cytoplasmic; Catalyzes the specific attachment of an amino acid to its cognate tRNA in a two step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA. Exhibits a post-transfer editing activity to hydrolyze mischarged tRNAs.
  
 
 0.954
AARS1
Alanine--tRNA ligase, cytoplasmic; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged tRNA(Ala) via its editing domain. Belongs to the class-II aminoacyl-tRNA synthetase family.
  
 
 0.947
ASNS
Asparagine synthetase.
 
 
 0.943
GARS1
Glycine--tRNA ligase; Catalyzes the ATP-dependent ligation of glycine to the 3'-end of its cognate tRNA, via the formation of an aminoacyl-adenylate intermediate (Gly-AMP). Also produces diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways, by direct condensation of 2 ATPs. Thereby, may play a special role in Ap4A homeostasis. Belongs to the class-II aminoacyl-tRNA synthetase family.
  
 
 0.939
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: medium (42%) [HD]