STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
LRRC8AVolume-regulated anion channel subunit LRRC8A; Essential component of the volume-regulated anion channel (VRAC, also named VSOAC channel), an anion channel required to maintain a constant cell volume in response to extracellular or intracellular osmotic changes. The VRAC channel conducts iodide better than chloride and can also conduct organic osmolytes like taurine. Mediates efflux of amino acids, such as aspartate and glutamate, in response to osmotic stress. LRRC8A and LRRC8D are required for the uptake of the drug cisplatin. Required for in vivo channel activity, together with at l [...] (810 aa)    
Predicted Functional Partners:
LRRC8C
Volume-regulated anion channel subunit LRRC8C; Non-essential component of the volume-regulated anion channel (VRAC, also named VSOAC channel), an anion channel required to maintain a constant cell volume in response to extracellular or intracellular osmotic changes. The VRAC channel conducts iodide better than chloride and can also conduct organic osmolytes like taurine. Plays a redundant role in the efflux of amino acids, such as aspartate and glutamate, in response to osmotic stress. Channel activity requires LRRC8A plus at least one other family member (LRRC8B, LRRC8C, LRRC8D or LRR [...]
  
0.995
LRRC8E
Volume-regulated anion channel subunit LRRC8E; Non-essential component of the volume-regulated anion channel (VRAC, also named VSOAC channel), an anion channel required to maintain a constant cell volume in response to extracellular or intracellular osmotic changes. The VRAC channel conducts iodide better than chloride and can also conduct organic osmolytes like taurine. Mediates efflux of amino acids, such as aspartate, in response to osmotic stress. Channel activity requires LRRC8A plus at least one other family member (LRRC8B, LRRC8C, LRRC8D or LRRC8E); channel characteristics depen [...]
  
0.985
LRRC8B
Volume-regulated anion channel subunit LRRC8B; Non-essential component of the volume-regulated anion channel (VRAC, also named VSOAC channel), an anion channel required to maintain a constant cell volume in response to extracellular or intracellular osmotic changes. The VRAC channel conducts iodide better than chloride and can also conduct organic osmolytes like taurine. Channel activity requires LRRC8A plus at least one other family member (LRRC8B, LRRC8C, LRRC8D or LRRC8E); channel characteristics depend on the precise subunit composition.
  
 
0.979
LRRC8D
Volume-regulated anion channel subunit LRRC8D; Non-essential component of the volume-regulated anion channel (VRAC, also named VSOAC channel), an anion channel required to maintain a constant cell volume in response to extracellular or intracellular osmotic changes. The VRAC channel conducts iodide better than chloride and can also conduct organic osmolytes like taurine. Plays a redundant role in the efflux of amino acids, such as aspartate, in response to osmotic stress. Channel activity requires LRRC8A plus at least one other family member (LRRC8B, LRRC8C, LRRC8D or LRRC8E); channel [...]
  
 
0.955
IGLL1
Immunoglobulin lambda-like polypeptide 1; Critical for B-cell development.
    
 
 0.749
BEST1
Bestrophin-1; Forms calcium-sensitive chloride channels. Highly permeable to bicarbonate.
      
 0.740
ANO1
Anoctamin-1; Calcium-activated chloride channel (CaCC) which plays a role in transepithelial anion transport and smooth muscle contraction. Required for the normal functioning of the interstitial cells of Cajal (ICCs) which generate electrical pacemaker activity in gastrointestinal smooth muscles. Acts as a major contributor to basal and stimulated chloride conductance in airway epithelial cells and plays an important role in tracheal cartilage development. Belongs to the anoctamin family.
   
  
 0.718
HEPACAM
Hepatocyte cell adhesion molecule; Involved in regulating cell motility and cell-matrix interactions. May inhibit cell growth through suppression of cell proliferation.
      
 0.694
PGM3
Phosphoacetylglucosamine mutase; Catalyzes the conversion of GlcNAc-6-P into GlcNAc-1-P during the synthesis of uridine diphosphate/UDP-GlcNAc, a sugar nucleotide critical to multiple glycosylation pathways including protein N- and O- glycosylation.
   
  
 0.692
KCNJ10
ATP-sensitive inward rectifier potassium channel 10; May be responsible for potassium buffering action of glial cells in the brain. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellu [...]
      
 0.670
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (34%) [HD]