STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
SLC40A1Solute carrier family 40 member 1; May be involved in iron export from duodenal epithelial cell and also in transfer of iron between maternal and fetal circulation. Mediates iron efflux in the presence of a ferroxidase (hephaestin and/or ceruloplasmin); Belongs to the ferroportin (FP) (TC 2.A.100) family. SLC40A subfamily (571 aa)    
Predicted Functional Partners:
Hephaestin; May function as a ferroxidase for ferrous (II) to ferric ion (III) conversion and may be involved in copper transport and homeostasis. Implicated in iron homeostasis and may mediate iron efflux associated to ferroportin 1
Ceruloplasmin; Ceruloplasmin is a blue, copper-binding (6-7 atoms per molecule) glycoprotein. It has ferroxidase activity oxidizing Fe(2+) to Fe(3+) without releasing radical oxygen species. It is involved in iron transport across the cell membrane. Provides Cu(2+) ions for the ascorbate-mediated deaminase degradation of the heparan sulfate chains of GPC1. May also play a role in fetal lung development or pulmonary antioxidant defense (By similarity)
Hepcidin; Liver-produced hormone that constitutes the main circulating regulator of iron absorption and distribution across tissues. Acts by promoting endocytosis and degradation of ferroportin, leading to the retention of iron in iron-exporting cells and decreased flow of iron into plasma. Controls the major flows of iron into plasma: absorption of dietary iron in the intestine, recycling of iron by macrophages, which phagocytose old erythrocytes and other cells, and mobilization of stored iron from hepatocytes; Belongs to the hepcidin family
Natural resistance-associated macrophage protein 2; Important in metal transport, in particular iron. Can also transport manganese, cobalt, cadmium, nickel, vanadium and lead. Involved in apical iron uptake into duodenal enterocytes. Involved in iron transport from acidified endosomes into the cytoplasm of erythroid precursor cells. May play an important role in hepatic iron accumulation and tissue iron distribution. May serve to import iron into the mitochondria; Belongs to the NRAMP family
Transferrin receptor protein 2; Mediates cellular uptake of transferrin-bound iron in a non-iron dependent manner. May be involved in iron metabolism, hepatocyte function and erythrocyte differentiation; Belongs to the peptidase M28 family. M28B subfamily
Hemojuvelin; Acts as a bone morphogenetic protein (BMP) coreceptor. Through enhancement of BMP signaling regulates hepcidin (HAMP) expression and regulates iron homeostasis; Belongs to the repulsive guidance molecule (RGM) family
Cytochrome b reductase 1; Ferric-chelate reductase that reduces Fe(3+) to Fe(2+). Present at the brush border of duodenal enterocytes where it probably reduces dietary Fe(3+) thereby facilitating its transport into the mucosal cells. Uses ascorbate as electron donor. May be involved in extracellular ascorbate recycling in erythrocyte membranes. May also act as a ferrireductase in airway epithelial cells; Cytochrome b561
Hereditary hemochromatosis protein; Binds to transferrin receptor (TFR) and reduces its affinity for iron-loaded transferrin; Belongs to the MHC class I family
Zinc transporter ZIP1; Mediates zinc uptake. May function as a major endogenous zinc uptake transporter in many cells of the body. Responsible for the rapid uptake and accumulation of physiologically effective zinc in prostate cells; Solute carriers
Transferrin receptor protein 1; Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes. Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system (By similarity). A second ligand, the heditary hemochromatosis protein HFE, competes for binding with transferrin for [...]
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (19%) [HD]