STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
TMED2Transmembrane emp24 domain-containing protein 2; Involved in vesicular protein trafficking. Mainly functions in the early secretory pathway but also in post-Golgi membranes. Thought to act as cargo receptor at the lumenal side for incorporation of secretory cargo molecules into transport vesicles and to be involved in vesicle coat formation at the cytoplasmic side. In COPII vesicle- mediated anterograde transport involved in the transport of GPI- anchored proteins and proposed to act together with TMED10 as their cargo receptor; the function specifically implies SEC24C and SEC24D of th [...] (201 aa)    
Predicted Functional Partners:
TMED10
Transmembrane emp24 domain-containing protein 10; Involved in vesicular protein trafficking. Mainly functions in the early secretory pathway. Thought to act as cargo receptor at the lumenal side for incorporation of secretory cargo molecules into transport vesicles and to be involved in vesicle coat formation at the cytoplasmic side. In COPII vesicle-mediated anterograde transport involved in the transport of GPI-anchored proteins and proposed to act together with TMED2 as their cargo receptor; the function specifically implies SEC24C and SEC24D of the COPII vesicle coat and lipid raft [...]
   
0.999
TMED9
Transmembrane emp24 domain-containing protein 9; Appears to be involved in vesicular protein trafficking, mainly in the early secretory pathway. In COPI vesicle-mediated retrograde transport involved in the coatomer recruitment to membranes of the early secretory pathway. Increases coatomer-dependent activity of ARFGAP2. Thought to play a crucial role in the specific retention of p24 complexes in cis-Golgi membranes; specifically contributes to the coupled localization of TMED2 and TMED10 in the cis-Golgi network. May be involved in organization of intracellular membranes, such as of t [...]
   
0.996
TMED4
Transmembrane emp24 domain-containing protein 4; Involved in vesicular protein trafficking, mainly in the early secretory pathway. targeting. Involved in the maintenance of the Golgi apparatus. Appears to play a role in the biosynthesis of secreted cargo including processing. Involved in endoplasmic reticulum stress response. May play a role in the regulation of heat-shock response and apoptosis (By similarity).
   
 
0.983
TMED7
Transmembrane emp24 domain-containing protein 7; Potential role in vesicular protein trafficking, mainly in the early secretory pathway. Appears to play a role in the biosynthesis of secreted cargo including processing and post-translational modifications.
   
0.969
TMED3
Transmembrane emp24 domain-containing protein 3; Potential role in vesicular protein trafficking, mainly in the early secretory pathway. Contributes to the coupled localization of TMED2 and TMED10 in the cis-Golgi network. Belongs to the EMP24/GP25L family.
   
0.966
TMED5
Transmembrane emp24 domain-containing protein 5; Potential role in vesicular protein trafficking, mainly in the early secretory pathway. Required for the maintenance of the Golgi apparatus; involved in protein exchange between Golgi stacks during assembly. Probably not required for COPI-vesicle-mediated retrograde transport.
   
 
0.954
SURF4
Surfeit locus protein 4; May play a role in the maintenance of the architecture of the endoplasmic reticulum-Golgi intermediate compartment and of the Golgi. Belongs to the SURF4 family.
   
 0.887
LMAN2
Vesicular integral-membrane protein VIP36; Plays a role as an intracellular lectin in the early secretory pathway. Interacts with N-acetyl-D-galactosamine and high- mannose type glycans and may also bind to O-linked glycans. Involved in the transport and sorting of glycoproteins carrying high mannose-type glycans (By similarity).
   
 0.865
LMAN1
Protein ERGIC-53; Mannose-specific lectin. May recognize sugar residues of glycoproteins, glycolipids, or glycosylphosphatidyl inositol anchors and may be involved in the sorting or recycling of proteins, lipids, or both. The LMAN1-MCFD2 complex forms a specific cargo receptor for the ER-to-Golgi transport of selected proteins.
   
 0.850
RAB1A
Ras-related protein Rab-1A; The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. RAB1A regulates vesicular protein transport from the endoplasmic reticulum (ER) to the Golgi compartment and on to the cell surface, and plays a role in IL-8 and growth hormone secreti [...]
   
 0.839
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: medium (76%) [HD]