STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CISD2CDGSH iron-sulfur domain-containing protein 2; Regulator of autophagy that contributes to antagonize BECN1- mediated cellular autophagy at the endoplasmic reticulum. Participates in the interaction of BCL2 with BECN1 and is required for BCL2-mediated depression of endoplasmic reticulum Ca(2+) stores during autophagy. Contributes to BIK-initiated autophagy, while it is not involved in BIK-dependent activation of caspases. Involved in life span control, probably via its function as regulator of autophagy. Belongs to the CISD protein family. CISD2 subfamily. (135 aa)    
Predicted Functional Partners:
CISD3
CDGSH iron-sulfur domain-containing protein 3, mitochondrial; Can transfer its iron-sulfur clusters to the apoferrodoxins FDX1 and FDX2. Contributes to mitochondrial iron homeostasis and in maintaining normal levels of free iron and reactive oxygen species, and thereby contributes to normal mitochondrial function. Belongs to the CISD protein family.
      
 0.962
WFS1
Wolframin; Participates in the regulation of cellular Ca(2+) homeostasis, at least partly, by modulating the filling state of the endoplasmic reticulum Ca(2+) store.
      
 0.946
BECN1
Beclin-1-C 35 kDa; Plays a central role in autophagy. Acts as core subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways: PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis. Involved in regulation of degradative endocytic trafficking and required for the abcission step in cytokinesis, probably in the context of PI3KC3-C2. Essential for the formation of PI3KC3-C2 but not PI3KC3-C1 PI3K complex fo [...]
   
  
 0.782
BCL2
Apoptosis regulator Bcl-2; Suppresses apoptosis in a variety of cell systems including factor-dependent lymphohematopoietic and neural cells. Regulates cell death by controlling the mitochondrial membrane permeability. Appears to function in a feedback loop system with caspases. Inhibits caspase activity either by preventing the release of cytochrome c from the mitochondria and/or by binding to the apoptosis-activating factor (APAF-1). May attenuate inflammation by impairing NLRP1-inflammasome activation, hence CASP1 activation and IL1B release.
    
 
 0.719
CANX
Calnexin; Calcium-binding protein that interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins. Associated with partial T-cell antigen receptor complexes that escape the ER of immature thymocytes, it may function as a signaling complex regulating thymocyte maturation. Additionally it may play a role in receptor-mediated endocytosis at t [...]
   
 
 0.706
NDUFA8
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
   
 
 0.646
TIMM10B
Mitochondrial import inner membrane translocase subunit Tim10 B; Component of the TIM22 complex, a complex that mediates the import and insertion of multi-pass transmembrane proteins into the mitochondrial inner membrane. The TIM22 complex forms a twin-pore translocase that uses the membrane potential as the external driving force. In the TIM22 complex, it may act as a docking point for the soluble 70 kDa complex that guides the target proteins in transit through the aqueous mitochondrial intermembrane space.
   
 
 0.642
GIMAP5
GTPase IMAP family member 5; Plays a role in T lymphocyte development and the optimal generation of CD4/CD8 double-positive thymocytes (By similarity). Inhibitor of GSK3A, possibly by sequestering GSK3A in cytoplasmic vesicles and impairing its translocation to the nucleus. Consequently, impairs GSK3A-dependent transcriptional program and regulation of the DNA damage response occurring during T cells proliferation. Required for the survival of peripheral T cells, natural killer (NK) and NK T-cell development and the maintenance of normal liver function (By similarity). May promote the [...]
      
 0.642
TIMM10
Mitochondrial import inner membrane translocase subunit Tim10; Mitochondrial intermembrane chaperone that participates in the import and insertion of multi-pass transmembrane proteins into the mitochondrial inner membrane. May also be required for the transfer of beta-barrel precursors from the TOM complex to the sorting and assembly machinery (SAM complex) of the outer membrane. Acts as a chaperone-like protein that protects the hydrophobic precursors from aggregation and guide them through the mitochondrial intermembrane space. Belongs to the small Tim family.
   
 
 0.633
TIMM9
Mitochondrial import inner membrane translocase subunit Tim9; Mitochondrial intermembrane chaperone that participates in the import and insertion of multi-pass transmembrane proteins into the mitochondrial inner membrane. May also be required for the transfer of beta-barrel precursors from the TOM complex to the sorting and assembly machinery (SAM complex) of the outer membrane. Acts as a chaperone-like protein that protects the hydrophobic precursors from aggregation and guide them through the mitochondrial intermembrane space. Belongs to the small Tim family.
   
 
 0.630
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (36%) [HD]