• Version:
  • 11.0 (preview - - version 10.5 still available here)
STRINGSTRING
SRD5A1 protein (human) - STRING interaction network
"SRD5A1" - 3-oxo-5-alpha-steroid 4-dehydrogenase 1 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SRD5A13-oxo-5-alpha-steroid 4-dehydrogenase 1; Converts testosterone into 5-alpha-dihydrotestosterone and progesterone or corticosterone into their corresponding 5- alpha-3-oxosteroids. It plays a central role in sexual differentiation and androgen physiology (259 aa)    
Predicted Functional Partners:
SRD5A3
Polyprenol reductase; Plays a key role in early steps of protein N-linked glycosylation by being required for the conversion of polyprenol into dolichol. Dolichols are required for the synthesis of dolichol-linked monosaccharides and the oligosaccharide precursor used for N-glycosylation. Acts as a polyprenol reductase that promotes the reduction of the alpha-isoprene unit of polyprenols into dolichols in a NADP-dependent mechanism. Also able to convert testosterone (T) into 5-alpha-dihydrotestosterone (DHT) (318 aa)
         
  0.979
HSD17B3
Testosterone 17-beta-dehydrogenase 3; Favors the reduction of androstenedione to testosterone. Uses NADPH while the two other EDH17B enzymes use NADH; Short chain dehydrogenase/reductase superfamily (310 aa)
     
 
  0.977
AKR1C3
Aldo-keto reductase family 1 member C3; Catalyzes the conversion of aldehydes and ketones to alcohols. Catalyzes the reduction of prostaglandin (PG) D2, PGH2 and phenanthrenequinone (PQ) and the oxidation of 9-alpha,11-beta- PGF2 to PGD2. Functions as a bi-directional 3-alpha-, 17-beta- and 20-alpha HSD. Can interconvert active androgens, estrogens and progestins with their cognate inactive metabolites. Preferentially transforms androstenedione (4-dione) to testosterone; Belongs to the aldo/keto reductase family (323 aa)
         
  0.972
CYP17A1
Steroid 17-alpha-hydroxylase/17,20 lyase; Conversion of pregnenolone and progesterone to their 17- alpha-hydroxylated products and subsequently to dehydroepiandrosterone (DHEA) and androstenedione. Catalyzes both the 17-alpha-hydroxylation and the 17,20-lyase reaction. Involved in sexual development during fetal life and at puberty; Belongs to the cytochrome P450 family (508 aa)
     
 
  0.972
HSD3B1
3 beta-hydroxysteroid dehydrogenase/Delta 5-->4-isomerase type 1; 3-beta-HSD is a bifunctional enzyme, that catalyzes the oxidative conversion of Delta(5)-ene-3-beta-hydroxy steroid, and the oxidative conversion of ketosteroids. The 3-beta-HSD enzymatic system plays a crucial role in the biosynthesis of all classes of hormonal steroids. Efficiently catalyzes the transformation of pregnenolone to progesterone, 17-alpha-hydroxypregnenolone to 17- alpha-hydroxyprogesterone, DHEA to 4-androstenedione, dihydrotestosterone to 5-alpha-androstane-3 beta,17 beta-diol, dehydroepiandrosterone to [...] (373 aa)
     
 
  0.970
HSD3B2
3 beta-hydroxysteroid dehydrogenase/Delta 5-->4-isomerase type 2; 3-beta-HSD is a bifunctional enzyme, that catalyzes the oxidative conversion of Delta(5)-ene-3-beta-hydroxy steroid, and the oxidative conversion of ketosteroids. The 3-beta-HSD enzymatic system plays a crucial role in the biosynthesis of all classes of hormonal steroids; Short chain dehydrogenase/reductase superfamily (372 aa)
     
 
  0.970
HSD17B6
17-beta-hydroxysteroid dehydrogenase type 6; NAD-dependent oxidoreductase with broad substrate specificity that shows both oxidative and reductive activity (in vitro). Has 17-beta-hydroxysteroid dehydrogenase activity towards various steroids (in vitro). Converts 5-alpha-androstan-3- alpha,17-beta-diol to androsterone and estradiol to estrone (in vitro). Has 3-alpha-hydroxysteroid dehydrogenase activity towards androsterone (in vitro). Has retinol dehydrogenase activity towards all-trans-retinol (in vitro). Can convert androsterone to epi-androsterone. Androsterone is first oxidized to [...] (317 aa)
     
 
  0.969
CYP19A1
Aromatase; Catalyzes the formation of aromatic C18 estrogens from C19 androgens; Cytochrome P450 family 19 (503 aa)
         
  0.965
AKR1C2
Aldo-keto reductase family 1 member C2; Works in concert with the 5-alpha/5-beta-steroid reductases to convert steroid hormones into the 3-alpha/5-alpha and 3-alpha/5-beta-tetrahydrosteroids. Catalyzes the inactivation of the most potent androgen 5-alpha-dihydrotestosterone (5-alpha- DHT) to 5-alpha-androstane-3-alpha,17-beta-diol (3-alpha-diol). Has a high bile-binding ability (323 aa)
         
  0.965
AKR1C1
Aldo-keto reductase family 1 member C1; Converts progesterone to its inactive form, 20-alpha- dihydroxyprogesterone (20-alpha-OHP). In the liver and intestine, may have a role in the transport of bile. May have a role in monitoring the intrahepatic bile acid concentration. Has a low bile-binding ability. May play a role in myelin formation; Belongs to the aldo/keto reductase family (323 aa)
         
  0.965
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (18%) [HD]