STRINGSTRING
FLCN protein (human) - STRING interaction network
"FLCN" - Folliculin in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
FLCNFolliculin; May be a tumor suppressor. May be involved in energy and/or nutrient sensing through the AMPK and mTOR signaling pathways. May regulate phosphorylation of RPS6KB1; DENN/MADD domain containing (579 aa)    
Predicted Functional Partners:
FNIP1
Folliculin-interacting protein 1; Acts as a co-chaperone of HSP90AA1. Inhibits the ATPase activity of HSP90AA1 leading to reduction in its chaperone activity. Facilitates the binding of client protein FLCN to HSP90AA1. Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins. May be involved in energy and/or nutrient sensing through the AMPK and mTOR signaling pathways. May regulate phosphorylation of RPS6KB1; Belongs to the FNIP family (1166 aa)
     
  0.993
FNIP2
Folliculin-interacting protein 2; Acts as a co-chaperone of HSP90AA1. Inhibits the ATPase activity of HSP90AA1 leading to reduction in its chaperone activity. Facilitates the binding of client protein FLCN to HSP90AA1. May play a role in the signal transduction pathway of apoptosis induced by O6-methylguanine- mispaired lesions (By similarity). May be involved in energy and/or nutrient sensing through the AMPK and mTOR signaling pathways. May regulate phosphorylation of RPS6KB1; DENN/MADD domain containing (1114 aa)
     
  0.990
RRAGC
Ras-related GTP-binding protein C; Guanine nucleotide-binding protein forming heterodimeric Rag complexes required for the amino acid-induced relocalization of mTORC1 to the lysosomes and its subsequent activation by the GTPase RHEB. This is a crucial step in the activation of the TOR signaling cascade by amino acids (399 aa)
     
  0.974
RRAGD
Ras-related GTP-binding protein D; Guanine nucleotide-binding protein forming heterodimeric Rag complexes required for the amino acid-induced relocalization of mTORC1 to the lysosomes and its subsequent activation by the GTPase RHEB. This is a crucial step in the activation of the TOR signaling cascade by amino acids (400 aa)
     
  0.968
RPS6KB1
Ribosomal protein S6 kinase beta-1; Serine/threonine-protein kinase that acts downstream of mTOR signaling in response to growth factors and nutrients to promote cell proliferation, cell growth and cell cycle progression. Regulates protein synthesis through phosphorylation of EIF4B, RPS6 and EEF2K, and contributes to cell survival by repressing the pro-apoptotic function of BAD. Under conditions of nutrient depletion, the inactive form associates with the EIF3 translation initiation complex. Upon mitogenic stimulation, phosphorylation by the mammalian target of rapamycin complex 1 (mTO [...] (525 aa)
           
  0.876
MIOS
GATOR complex protein MIOS; As a component of the GATOR subcomplex GATOR2, functions within the amino acid-sensing branch of the TORC1 signaling pathway. Indirectly activates mTORC1 and the TORC1 signaling pathway through the inhibition of the GATOR1 subcomplex. It is negatively regulated by the upstream amino acid sensors SESN2 and CASTOR1 (875 aa)
     
 
  0.846
RRAGA
Ras-related GTP-binding protein A; Guanine nucleotide-binding protein that plays a crucial role in the cellular response to amino acid availability through regulation of the mTORC1 signaling cascade. Forms heterodimeric Rag complexes with RRAGC or RRAGD and cycles between an inactive GDP-bound and an active GTP-bound form. In its active form participates in the relocalization of mTORC1 to the lysosomes and its subsequent activation by the GTPase RHEB. Involved in the RCC1/Ran-GTPase pathway. May play a direct role in a TNF-alpha signaling pathway leading to induction of cell death. May [...] (313 aa)
       
 
  0.842
RRAGB
Ras-related GTP-binding protein B; Guanine nucleotide-binding protein that plays a crucial role in the cellular response to amino acid availability through regulation of the mTORC1 signaling cascade. Forms heterodimeric Rag complexes with RRAGC or RRAGD and cycles between an inactive GDP-bound and an active GTP-bound form. In its active form participates in the relocalization of mTORC1 to the lysosomes and its subsequent activation by the GTPase RHEB. Involved in the RCC1/Ran-GTPase pathway; Belongs to the GTR/RAG GTP-binding protein family (374 aa)
       
 
  0.842
TFE3
Transcription factor E3; Transcription factor that specifically recognizes and binds E-box sequences (5’-CANNTG-3’). Efficient DNA-binding requires dimerization with itself or with another MiT/TFE family member such as TFEB or MITF. In association with TFEB, activates the expression of CD40L in T-cells, thereby playing a role in T- cell-dependent antibody responses in activated CD4(+) T-cells and thymus-dependent humoral immunity. Specifically recognizes the MUE3 box, a subset of E-boxes, present in the immunoglobulin enhancer. It also binds very well to a USF/MLTF site; Basic helix-lo [...] (575 aa)
     
   
  0.802
SMCR8
Guanine nucleotide exchange protein SMCR8; Component of the C9orf72-SMCR8 complex, a complex that has guanine nucleotide exchange factor (GEF) activity and regulates autophagy. In the complex, C9orf72 and SMCR8 probably constitute the catalytic subunits that promote the exchange of GDP to GTP, converting inactive GDP-bound RAB8A and RAB39B into their active GTP-bound form, thereby promoting autophagosome maturation. The C9orf72-SMCR8 complex also acts as a negative regulator of autophagy initiation by interacting with the ATG1/ULK1 kinase complex and inhibiting its protein kinase activ [...] (937 aa)
           
  0.801
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (9%) [HD]