STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
HMGCR3-hydroxy-3-methylglutaryl-coenzyme A reductase; Transmembrane glycoprotein that is the rate-limiting enzyme in cholesterol biosynthesis as well as in the biosynthesis of nonsterol isoprenoids that are essential for normal cell function including ubiquinone and geranylgeranyl proteins; Belongs to the HMG-CoA reductase family (888 aa)    
Predicted Functional Partners:
HMGCS1
Hydroxymethylglutaryl-CoA synthase, cytoplasmic; This enzyme condenses acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is the substrate for HMG-CoA reductase
 
 
 0.999
MVK
Mevalonate kinase; May be a regulatory site in cholesterol biosynthetic pathway; Belongs to the GHMP kinase family. Mevalonate kinase subfamily
 
 
 0.994
SQLE
Squalene monooxygenase; Catalyzes the first oxygenation step in sterol biosynthesis and is suggested to be one of the rate-limiting enzymes in this pathway; Belongs to the squalene monooxygenase family
   
  
 0.991
HMGCS2
Hydroxymethylglutaryl-CoA synthase, mitochondrial; This enzyme condenses acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is the substrate for HMG-CoA reductase
  
 
 0.987
CYP51A1
Lanosterol 14-alpha demethylase; Catalyzes C14-demethylation of lanosterol; it transforms lanosterol into 4,4'-dimethyl cholesta-8,14,24-triene-3-beta-ol; Cytochrome P450 family 51
   
  
 0.977
IDI1
Isopentenyl-diphosphate Delta-isomerase 1; Catalyzes the 1,3-allylic rearrangement of the homoallylic substrate isopentenyl (IPP) to its highly electrophilic allylic isomer, dimethylallyl diphosphate (DMAPP)
  
  
 0.976
MSMO1
Methylsterol monooxygenase 1; Catalyzes the first step in the removal of the two C-4 methyl groups of 4,4-dimethylzymosterol; Belongs to the sterol desaturase family
   
 
 0.970
SREBF2
Sterol regulatory element-binding protein 2; Transcriptional activator required for lipid homeostasis. Regulates transcription of the LDL receptor gene as well as the cholesterol and to a lesser degree the fatty acid synthesis pathway (By similarity). Binds the sterol regulatory element 1 (SRE-1) (5'-ATCACCCCAC-3') found in the flanking region of the LDRL and HMG-CoA synthase genes; Basic helix-loop-helix proteins
   
  
 0.953
FDPS
Farnesyl pyrophosphate synthase; Key enzyme in isoprenoid biosynthesis which catalyzes the formation of farnesyl diphosphate (FPP), a precursor for several classes of essential metabolites including sterols, dolichols, carotenoids, and ubiquinones. FPP also serves as substrate for protein farnesylation and geranylgeranylation. Catalyzes the sequential condensation of isopentenyl pyrophosphate with the allylic pyrophosphates, dimethylallyl pyrophosphate, and then with the resultant geranylpyrophosphate to the ultimate product farnesyl pyrophosphate
  
 
 0.952
MVD
Diphosphomevalonate decarboxylase; Performs the first committed step in the biosynthesis of isoprenes
 
  
 0.936
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (5%) [HD]