STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
ECI1Enoyl-CoA delta isomerase 1, mitochondrial; Able to isomerize both 3-cis and 3-trans double bonds into the 2-trans form in a range of enoyl-CoA species (302 aa)    
Predicted Functional Partners:
Enoyl-CoA delta isomerase 2, mitochondrial; Able to isomerize both 3-cis and 3-trans double bonds into the 2-trans form in a range of enoyl-CoA species. Has a preference for 3-trans substrates (By similarity)
Enoyl-CoA hydratase, mitochondrial; Straight-chain enoyl-CoA thioesters from C4 up to at least C16 are processed, although with decreasing catalytic rate. Has high substrate specificity for crotonyl-CoA and moderate specificity for acryloyl-CoA, 3-methylcrotonyl-CoA and methacrylyl-CoA. It is noteworthy that binds tiglyl-CoA, but hydrates only a small amount of this substrate
Peroxisomal bifunctional enzyme; enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase; In the C-terminal section; belongs to the 3- hydroxyacyl-CoA dehydrogenase family
2,4-dienoyl-CoA reductase, mitochondrial; Auxiliary enzyme of beta-oxidation. It participates in the metabolism of unsaturated fatty enoyl-CoA esters having double bonds in both even- and odd-numbered positions. Catalyzes the NADP-dependent reduction of 2,4-dienoyl-CoA to yield trans-3- enoyl-CoA; Belongs to the short-chain dehydrogenases/reductases (SDR) family. 2,4-dienoyl-CoA reductase subfamily
hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta
Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial; Plays an essential role in the mitochondrial beta- oxidation of short chain fatty acids. Exerts it highest activity toward 3-hydroxybutyryl-CoA; Belongs to the 3-hydroxyacyl-CoA dehydrogenase family
Short-chain specific acyl-CoA dehydrogenase, mitochondrial; Introduces a double bond at position 2 in saturated acyl-CoA's of short chain length, i.e. less than 6 carbon atoms; Belongs to the acyl-CoA dehydrogenase family
Protein phosphatase 1 regulatory subunit 35; Inhibits PPP1CA phosphatase activity; Protein phosphatase 1 regulatory subunits
Very long-chain specific acyl-CoA dehydrogenase, mitochondrial; Active toward esters of long-chain and very long chain fatty acids such as palmitoyl-CoA, mysritoyl-CoA and stearoyl-CoA. Can accommodate substrate acyl chain lengths as long as 24 carbons, but shows little activity for substrates of less than 12 carbons; Belongs to the acyl-CoA dehydrogenase family
Medium-chain specific acyl-CoA dehydrogenase, mitochondrial; Acyl-CoA dehydrogenase specific for acyl chain lengths of 4 to 16 that catalyzes the initial step of fatty acid beta- oxidation. Utilizes the electron transfer flavoprotein (ETF) as an electron acceptor to transfer electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (9%) [HD]