STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
STAC3SH3 and cysteine-rich domain-containing protein 3; Required for normal excitation-contraction coupling in skeletal muscle and for normal muscle contraction in response to membrane depolarization. Required for normal Ca(2+) release from the sarcplasmic reticulum, which ultimately leads to muscle contraction. Probably functions via its effects on muscle calcium channels. Increases CACNA1S channel activity, in addition to its role in enhancing the expression of CACNA1S at the cell membrane. Has a redundant role in promoting the expression of the calcium channel CACNA1S at the cell membran [...] (364 aa)    
Predicted Functional Partners:
CACNA1S
Voltage-dependent L-type calcium channel subunit alpha-1S; Pore-forming, alpha-1S subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle via their interaction with RYR1, which triggers Ca(2+) release from the sarcplasmic reticulum and ultimately results in muscle contraction. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group.
   
 
 0.973
RYR1
Ryanodine receptor 1; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules. Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm. Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. Required for nor [...]
   
 
 0.961
FKBP1A
Peptidyl-prolyl cis-trans isomerase FKBP1A; Keeps in an inactive conformation TGFBR1, the TGF-beta type I serine/threonine kinase receptor, preventing TGF-beta receptor activation in absence of ligand. Recruits SMAD7 to ACVR1B which prevents the association of SMAD2 and SMAD3 with the activin receptor complex, thereby blocking the activin signal. May modulate the RYR1 calcium channel activity. PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. Belongs to the FKBP-type PPIase family. FKBP1 subfamily.
     
 0.875
CACNA1C
Voltage-dependent L-type calcium channel subunit alpha-1C; Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. Mediates influx of calcium ions into the cytoplasm, and thereby triggers calcium release from the sarcoplasm (By similarity). Plays an important role in excitation-contraction coupling in the heart. Required for normal heart development and normal regulation of heart rhythm. Required for normal contraction of smooth muscle cells in blood vessels and in the intestine. Essential for normal blood pressure regulation via [...]
   
 
 0.853
CACNA1D
Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...]
   
 
 0.810
CACNA1F
Voltage-dependent L-type calcium channel subunit alpha-1F; [Isoform 1]: Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1F gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzot [...]
   
 
 0.804
CACNA1A
Voltage-dependent P/Q-type calcium channel subunit alpha-1A; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1A gives rise to P and/or Q- type calcium currents. P/Q-type calcium channels belong to the 'high- voltage activated' (HVA) group and are specifically blocked by the spider omega-agatoxin-IVA (AC P54282) (By similarity). [...]
   
 
 0.799
CACNA1H
Voltage-dependent T-type calcium channel subunit alpha-1H; Voltage-sensitive calcium channel that gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group. A particularity of this type of channel is an opening at quite negative potentials, and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle (Probable). They may also be involved in the modulation of firing patterns of neurons. In t [...]
     
 0.769
CACNG1
Voltage-dependent calcium channel gamma-1 subunit; Regulatory subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Regulates channel inactivation kinetics; Belongs to the PMP-22/EMP/MP20 family. CACNG subfamily.
   
 
 0.767
CACNA2D1
Voltage-dependent calcium channel subunit alpha-2/delta-1; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Plays an important role in excitation- contraction coupling (By similarity).
     
 0.763
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (20%) [HD]