node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ATP6AP1 | ATP6V0A2 | ENSP00000358777 | ENSP00000332247 | V-type proton ATPase subunit S1; Accessory subunit of the proton-transporting vacuolar (V)-ATPase protein pump, which is required for luminal acidification of secretory vesicles. Guides the V-type ATPase into specialized subcellular compartments, such as neuroendocrine regulated secretory vesicles or the ruffled border of the osteoclast, thereby regulating its activity. Involved in membrane trafficking and Ca(2+)-dependent membrane fusion. May play a role in the assembly of the V-type ATPase complex. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the [...] | V-type proton ATPase 116 kDa subunit a isoform 2; Part of the proton channel of V-ATPases. Essential component of the endosomal pH-sensing machinery. May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the V-ATPase 116 kDa subunit family | 0.984 |
ATP6AP1 | ATP6V0B | ENSP00000358777 | ENSP00000434729 | V-type proton ATPase subunit S1; Accessory subunit of the proton-transporting vacuolar (V)-ATPase protein pump, which is required for luminal acidification of secretory vesicles. Guides the V-type ATPase into specialized subcellular compartments, such as neuroendocrine regulated secretory vesicles or the ruffled border of the osteoclast, thereby regulating its activity. Involved in membrane trafficking and Ca(2+)-dependent membrane fusion. May play a role in the assembly of the V-type ATPase complex. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the [...] | V-type proton ATPase 21 kDa proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells; V-type ATPases | 0.989 |
ATP6AP1 | ATP6V0C | ENSP00000358777 | ENSP00000329757 | V-type proton ATPase subunit S1; Accessory subunit of the proton-transporting vacuolar (V)-ATPase protein pump, which is required for luminal acidification of secretory vesicles. Guides the V-type ATPase into specialized subcellular compartments, such as neuroendocrine regulated secretory vesicles or the ruffled border of the osteoclast, thereby regulating its activity. Involved in membrane trafficking and Ca(2+)-dependent membrane fusion. May play a role in the assembly of the V-type ATPase complex. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the [...] | V-type proton ATPase 16 kDa proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells; V-type ATPases | 0.996 |
ATP6AP1 | ATP6V0D1 | ENSP00000358777 | ENSP00000290949 | V-type proton ATPase subunit S1; Accessory subunit of the proton-transporting vacuolar (V)-ATPase protein pump, which is required for luminal acidification of secretory vesicles. Guides the V-type ATPase into specialized subcellular compartments, such as neuroendocrine regulated secretory vesicles or the ruffled border of the osteoclast, thereby regulating its activity. Involved in membrane trafficking and Ca(2+)-dependent membrane fusion. May play a role in the assembly of the V-type ATPase complex. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the [...] | V-type proton ATPase subunit d 1; Subunit of the integral membrane V0 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system. May play a role in coupling of proton transport and ATP hydrolysis (By similarity). May play a role in cilium biogenesis through regulation of the transport and the localization of proteins to the cilium (By similarity). In aerobic conditions, involved in intracellular iron homeostasis, thus tri [...] | 0.995 |
ATP6AP1 | ATP6V0D2 | ENSP00000358777 | ENSP00000285393 | V-type proton ATPase subunit S1; Accessory subunit of the proton-transporting vacuolar (V)-ATPase protein pump, which is required for luminal acidification of secretory vesicles. Guides the V-type ATPase into specialized subcellular compartments, such as neuroendocrine regulated secretory vesicles or the ruffled border of the osteoclast, thereby regulating its activity. Involved in membrane trafficking and Ca(2+)-dependent membrane fusion. May play a role in the assembly of the V-type ATPase complex. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the [...] | V-type proton ATPase subunit d 2; Subunit of the integral membrane V0 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system. May play a role in coupling of proton transport and ATP hydrolysis (By similarity); V-type ATPases | 0.993 |
ATP6AP1 | ATP6V1A | ENSP00000358777 | ENSP00000273398 | V-type proton ATPase subunit S1; Accessory subunit of the proton-transporting vacuolar (V)-ATPase protein pump, which is required for luminal acidification of secretory vesicles. Guides the V-type ATPase into specialized subcellular compartments, such as neuroendocrine regulated secretory vesicles or the ruffled border of the osteoclast, thereby regulating its activity. Involved in membrane trafficking and Ca(2+)-dependent membrane fusion. May play a role in the assembly of the V-type ATPase complex. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the [...] | V-type proton ATPase catalytic subunit A; Catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the ATPase alpha/beta chains family | 0.992 |
ATP6AP1 | ATP6V1B1 | ENSP00000358777 | ENSP00000234396 | V-type proton ATPase subunit S1; Accessory subunit of the proton-transporting vacuolar (V)-ATPase protein pump, which is required for luminal acidification of secretory vesicles. Guides the V-type ATPase into specialized subcellular compartments, such as neuroendocrine regulated secretory vesicles or the ruffled border of the osteoclast, thereby regulating its activity. Involved in membrane trafficking and Ca(2+)-dependent membrane fusion. May play a role in the assembly of the V-type ATPase complex. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the [...] | V-type proton ATPase subunit B, kidney isoform; Non-catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells; Belongs to the ATPase alpha/beta chains family | 0.976 |
ATP6AP1 | ATP6V1D | ENSP00000358777 | ENSP00000216442 | V-type proton ATPase subunit S1; Accessory subunit of the proton-transporting vacuolar (V)-ATPase protein pump, which is required for luminal acidification of secretory vesicles. Guides the V-type ATPase into specialized subcellular compartments, such as neuroendocrine regulated secretory vesicles or the ruffled border of the osteoclast, thereby regulating its activity. Involved in membrane trafficking and Ca(2+)-dependent membrane fusion. May play a role in the assembly of the V-type ATPase complex. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the [...] | V-type proton ATPase subunit D; Subunit of the peripheral V1 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system (By similarity). May play a role in cilium biogenesis through regulation of the transport and the localization of proteins to the cilium | 0.988 |
ATP6AP1 | ATP6V1F | ENSP00000358777 | ENSP00000417378 | V-type proton ATPase subunit S1; Accessory subunit of the proton-transporting vacuolar (V)-ATPase protein pump, which is required for luminal acidification of secretory vesicles. Guides the V-type ATPase into specialized subcellular compartments, such as neuroendocrine regulated secretory vesicles or the ruffled border of the osteoclast, thereby regulating its activity. Involved in membrane trafficking and Ca(2+)-dependent membrane fusion. May play a role in the assembly of the V-type ATPase complex. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the [...] | ATPase H+ transporting V1 subunit F; V-type ATPases | 0.992 |
ATP6AP1 | ATP6V1H | ENSP00000358777 | ENSP00000352522 | V-type proton ATPase subunit S1; Accessory subunit of the proton-transporting vacuolar (V)-ATPase protein pump, which is required for luminal acidification of secretory vesicles. Guides the V-type ATPase into specialized subcellular compartments, such as neuroendocrine regulated secretory vesicles or the ruffled border of the osteoclast, thereby regulating its activity. Involved in membrane trafficking and Ca(2+)-dependent membrane fusion. May play a role in the assembly of the V-type ATPase complex. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the [...] | V-type proton ATPase subunit H; Subunit of the peripheral V1 complex of vacuolar ATPase. Subunit H activates the ATPase activity of the enzyme and couples ATPase activity to proton flow. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system (By similarity). Involved in the endocytosis mediated by clathrin-coated pits, required for the formation of endosomes | 0.987 |
ATP6V0A2 | ATP6AP1 | ENSP00000332247 | ENSP00000358777 | V-type proton ATPase 116 kDa subunit a isoform 2; Part of the proton channel of V-ATPases. Essential component of the endosomal pH-sensing machinery. May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the V-ATPase 116 kDa subunit family | V-type proton ATPase subunit S1; Accessory subunit of the proton-transporting vacuolar (V)-ATPase protein pump, which is required for luminal acidification of secretory vesicles. Guides the V-type ATPase into specialized subcellular compartments, such as neuroendocrine regulated secretory vesicles or the ruffled border of the osteoclast, thereby regulating its activity. Involved in membrane trafficking and Ca(2+)-dependent membrane fusion. May play a role in the assembly of the V-type ATPase complex. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the [...] | 0.984 |
ATP6V0A2 | ATP6V0B | ENSP00000332247 | ENSP00000434729 | V-type proton ATPase 116 kDa subunit a isoform 2; Part of the proton channel of V-ATPases. Essential component of the endosomal pH-sensing machinery. May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the V-ATPase 116 kDa subunit family | V-type proton ATPase 21 kDa proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells; V-type ATPases | 0.987 |
ATP6V0A2 | ATP6V0C | ENSP00000332247 | ENSP00000329757 | V-type proton ATPase 116 kDa subunit a isoform 2; Part of the proton channel of V-ATPases. Essential component of the endosomal pH-sensing machinery. May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the V-ATPase 116 kDa subunit family | V-type proton ATPase 16 kDa proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells; V-type ATPases | 0.995 |
ATP6V0A2 | ATP6V0D1 | ENSP00000332247 | ENSP00000290949 | V-type proton ATPase 116 kDa subunit a isoform 2; Part of the proton channel of V-ATPases. Essential component of the endosomal pH-sensing machinery. May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the V-ATPase 116 kDa subunit family | V-type proton ATPase subunit d 1; Subunit of the integral membrane V0 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system. May play a role in coupling of proton transport and ATP hydrolysis (By similarity). May play a role in cilium biogenesis through regulation of the transport and the localization of proteins to the cilium (By similarity). In aerobic conditions, involved in intracellular iron homeostasis, thus tri [...] | 0.990 |
ATP6V0A2 | ATP6V0D2 | ENSP00000332247 | ENSP00000285393 | V-type proton ATPase 116 kDa subunit a isoform 2; Part of the proton channel of V-ATPases. Essential component of the endosomal pH-sensing machinery. May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the V-ATPase 116 kDa subunit family | V-type proton ATPase subunit d 2; Subunit of the integral membrane V0 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system. May play a role in coupling of proton transport and ATP hydrolysis (By similarity); V-type ATPases | 0.995 |
ATP6V0A2 | ATP6V1A | ENSP00000332247 | ENSP00000273398 | V-type proton ATPase 116 kDa subunit a isoform 2; Part of the proton channel of V-ATPases. Essential component of the endosomal pH-sensing machinery. May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the V-ATPase 116 kDa subunit family | V-type proton ATPase catalytic subunit A; Catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the ATPase alpha/beta chains family | 0.987 |
ATP6V0A2 | ATP6V1B1 | ENSP00000332247 | ENSP00000234396 | V-type proton ATPase 116 kDa subunit a isoform 2; Part of the proton channel of V-ATPases. Essential component of the endosomal pH-sensing machinery. May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the V-ATPase 116 kDa subunit family | V-type proton ATPase subunit B, kidney isoform; Non-catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells; Belongs to the ATPase alpha/beta chains family | 0.989 |
ATP6V0A2 | ATP6V1D | ENSP00000332247 | ENSP00000216442 | V-type proton ATPase 116 kDa subunit a isoform 2; Part of the proton channel of V-ATPases. Essential component of the endosomal pH-sensing machinery. May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the V-ATPase 116 kDa subunit family | V-type proton ATPase subunit D; Subunit of the peripheral V1 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system (By similarity). May play a role in cilium biogenesis through regulation of the transport and the localization of proteins to the cilium | 0.989 |
ATP6V0A2 | ATP6V1F | ENSP00000332247 | ENSP00000417378 | V-type proton ATPase 116 kDa subunit a isoform 2; Part of the proton channel of V-ATPases. Essential component of the endosomal pH-sensing machinery. May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the V-ATPase 116 kDa subunit family | ATPase H+ transporting V1 subunit F; V-type ATPases | 0.983 |
ATP6V0A2 | ATP6V1H | ENSP00000332247 | ENSP00000352522 | V-type proton ATPase 116 kDa subunit a isoform 2; Part of the proton channel of V-ATPases. Essential component of the endosomal pH-sensing machinery. May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the V-ATPase 116 kDa subunit family | V-type proton ATPase subunit H; Subunit of the peripheral V1 complex of vacuolar ATPase. Subunit H activates the ATPase activity of the enzyme and couples ATPase activity to proton flow. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system (By similarity). Involved in the endocytosis mediated by clathrin-coated pits, required for the formation of endosomes | 0.989 |