STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KCNT1Potassium channel subfamily T member 1; Outwardly rectifying potassium channel subunit that may coassemble with other Slo-type channel subunits. Activated by high intracellular sodium or chloride levels. Activated upon stimulation of G-protein coupled receptors, such as CHRM1 and GRIA1. May be regulated by calcium in the absence of sodium ions (in vitro) (By similarity); Belongs to the potassium channel family. Calcium- activated (TC 1.A.1.3) subfamily. KCa4.1/KCNT1 sub-subfamily (1235 aa)    
Predicted Functional Partners:
KCNQ2
Potassium voltage-gated channel subfamily KQT member 2; Associates with KCNQ3 to form a potassium channel with essentially identical properties to the channel underlying the native M-current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to synaptic inputs. Therefore, it is important in the regulation of neuronal excitability. KCNQ2/KCNQ3 current is blocked by linopirdine and XE991, and activated by the anticonvulsant retigabine. As the native M-chan [...]
   
  
 0.766
KCNA2
Potassium voltage-gated channel subfamily A member 2; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and the central nervous system, but also in the cardiovascular system. Prevents aberrant action potential firing and regulates neuronal output. Forms tetrameric potassium- selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form func [...]
   
  
 0.763
SCN1A
Sodium channel protein type 1 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. Plays a key role in brain, probably by regulating the moment when neurotransmitters are released in neurons. Involved in sensory perception of mechanical pain: activation in somatosensory neurons induces pain without neurogenic inflammatio [...]
   
  
 0.760
SCN2A
Sodium channel protein type 2 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient; Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.2/SCN2A subfamily
   
  
 0.738
TBC1D24
TBC1 domain family member 24; May act as a GTPase-activating protein for Rab family protein(s). Involved in neuronal projections development, probably through a negative modulation of ARF6 function; Deafness associated genes
   
  
 0.736
CHRNA4
Neuronal acetylcholine receptor subunit alpha-4; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodium ions; Cholinergic receptors nicotinic subunits
   
  
 0.709
CHRNA2
Neuronal acetylcholine receptor subunit alpha-2; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane; Cholinergic receptors nicotinic subunits
   
  
 0.708
CHRNB2
Neuronal acetylcholine receptor subunit beta-2; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodiun ions; Cholinergic receptors nicotinic subunits
   
  
 0.704
DEPDC5
GATOR complex protein DEPDC5; As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the TORC1 pathway. The GATOR1 complex strongly increases GTP hydrolysis by RRAGA and RRAGB within RRAGC-containing heterodimers, thereby deactivating RRAGs, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling. The GATOR1 complex is negatively regulated by GATOR2 the other GATOR subcomplex in this amino acid-sensing branch of the TORC1 pathway
      
 0.701
SLC25A22
Mitochondrial glutamate carrier 1; Involved in the transport of glutamate across the inner mitochondrial membrane. Glutamate is cotransported with H(+); Belongs to the mitochondrial carrier (TC 2.A.29) family
   
  
 0.700
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (4%) [HD]