STRINGSTRING
PLA2G5 protein (human) - STRING interaction network
"PLA2G5" - Calcium-dependent phospholipase A2 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PLA2G5Calcium-dependent phospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2- acyl groups in 3-sn-phosphoglycerides. This isozyme hydrolyzes more efficiently L-alpha-1-palmitoyl-2-oleoyl phosphatidylcholine than L-alpha-1-palmitoyl-2-arachidonyl phosphatidylcholine, L- alpha-1-palmitoyl-2-arachidonyl phosphatidylethanolamine, or L- alpha-1-stearoyl-2-arachidonyl phosphatidylinositol. May be involved in the production of lung surfactant, the remodeling or regulation of cardiac muscle (138 aa)    
Predicted Functional Partners:
PLA2G4D
Cytosolic phospholipase A2 delta; Calcium-dependent phospholipase A2 that selectively hydrolyzes glycerophospholipids in the sn-2 position. May have a substrate specificity for linoleic acid at the sn-2 position; C2 domain containing phospholipases (818 aa)
           
  0.905
PLA2G4A
Cytosolic phospholipase A2; Selectively hydrolyzes arachidonyl phospholipids in the sn-2 position releasing arachidonic acid. Together with its lysophospholipid activity, it is implicated in the initiation of the inflammatory response; C2 domain containing phospholipases (749 aa)
       
 
  0.826
PLD1
Phospholipase D1; Implicated as a critical step in numerous cellular pathways, including signal transduction, membrane trafficking, and the regulation of mitosis. May be involved in the regulation of perinuclear intravesicular membrane traffic (By similarity); Phospholipases (1074 aa)
         
  0.799
PLA2G15
Group XV phospholipase A2; Has transacylase and calcium-independent phospholipase A2 activity. Catalyzes the formation of 1-O-acyl-N-acetylsphingosine and the concomitant release of a lyso-phospholipid. Has high activity with 1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), catalyzing the transfer of oleic acid to N-acetyl- sphingosine. Required for normal phospholipid degradation in alveolar and peritoneal macrophages and in spleen (By similarity). May have weak lysophospholipase activity; Phospholipases (412 aa)
     
 
  0.795
PTGS2
Prostaglandin G/H synthase 2; Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Constitutively expressed in some tissues in physiological conditions, such as the endothelium, kidney and brain, and in pathological conditions, such as in cancer. PTGS2 is responsible for production of inflammatory prostaglandins. Up-regulation of PTGS2 is also associated with increased cell adhesion, phenotypic changes, resistance to apoptosis and tumor angiogenesis. In cancer cells, PTGS2 is a key step in the production of prostaglandin E2 (PGE2), which plays imp [...] (604 aa)
     
 
  0.771
ENSG00000168970
JMJD7-PLA2G4B readthrough (1012 aa)
     
   
  0.766
PLA2G16
HRAS-like suppressor 3; Lipid-modifying enzyme that acts as major regulator of adipocyte lipolysis by catalyzing the release of fatty acids from phospholipids in adipose tissue. Shows phospholipase A1 and A2 activity, catalyzing the calcium- independent hydrolysis of acyl groups in various phosphatidylcholines (PC) and phosphatidylethanolamine (PE). For most substrates, phospholipase A1 activity is much higher than phospholipase A2 activity. Phospholipase activity causes decreased intracellular levels of ether-type lipids, affecting peroxisome metabolism (By similarity). May also have [...] (162 aa)
     
 
  0.765
ALOX5
Arachidonate 5-lipoxygenase; Catalyzes the first step in leukotriene biosynthesis, and thereby plays a role in inflammatory processes; Belongs to the lipoxygenase family (674 aa)
         
  0.756
PLA2G7
Platelet-activating factor acetylhydrolase; Modulates the action of platelet-activating factor (PAF) by hydrolyzing the sn-2 ester bond to yield the biologically inactive lyso-PAF. Has a specificity for substrates with a short residue at the sn-2 position. It is inactive against long-chain phospholipids; Phospholipases (441 aa)
         
  0.753
PTGS1
Prostaglandin G/H synthase 1; Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Involved in the constitutive production of prostanoids in particular in the stomach and platelets. In gastric epithelial cells, it is a key step in the generation of prostaglandins, such as prostaglandin E2 (PGE2), which plays an important role in cytoprotection. In platelets, it is involved in the generation of thromboxane A2 (TXA2), which promotes platelet activation and aggregation, vasoconstriction and proliferation of vascular smooth muscle cells; Belongs to th [...] (599 aa)
     
 
  0.740
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (14%) [HD]