STRINGSTRING
SCN2A protein (human) - STRING interaction network
"SCN2A" - Sodium channel protein type 2 subunit alpha in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SCN2ASodium channel protein type 2 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient; Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.2/SCN2A subfamily (2005 aa)    
Predicted Functional Partners:
SCN3A
Sodium channel protein type 3 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient; Sodium voltage-gated channel alpha subunits (2000 aa)
     
0.993
SCN1B
Sodium channel subunit beta-1; Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-1 can modulate multiple alpha subunit isoforms from brain, skeletal muscle, and heart. Its association with NFASC may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons; Immunoglobulin like domain containing (268 aa)
     
  0.983
ANK3
Ankyrin-3; In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments. Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption; Ankyrin repeat domain containing (4377 aa)
     
  0.978
SCN4A
Sodium channel protein type 4 subunit alpha; This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. This sodium channel may be present in both denervated and innervated skeletal muscle; Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.4/SCN4A subfamily (1836 aa)
       
0.974
CALM3
Calmodulin 3 (phosphorylase kinase, delta); Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium-dependent inactivation of CACNA1C. Positively regulates calcium-activated potassium channel activity of KCNN2 (149 aa)
     
 
  0.972
SCN4B
Sodium channel subunit beta-4; Modulates channel gating kinetics. Causes negative shifts in the voltage dependence of activation of certain alpha sodium channels, but does not affect the voltage dependence of inactivation. Modulates the suceptibility of the sodium channel to inhibition by toxic peptides from spider, scorpion, wasp and sea anemone venom; Sodium voltage-gated channel beta subunits (228 aa)
     
  0.971
CALM1
Calmodulin-1; Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium-dependent inactivation of CACNA1C. Positively regulates calcium-activated potassium channel activity of KCNN2 (149 aa)
     
 
  0.967
SCN2B
Sodium channel subunit beta-2; Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-2 causes an increase in the plasma membrane surface area and in its folding into microvilli. Interacts with TNR may play a crucial role in clustering and regulation of activity of sodium channels at nodes of Ranvier (By similarity); Belongs to the sodium channel auxiliary subunit SCN2B (TC 8.A.17) family (215 aa)
     
 
  0.967
CALM2
Calmodulin 2 (phosphorylase kinase, delta); EF-hand domain containing (149 aa)
     
 
  0.965
NFASC
Neurofascin; Cell adhesion, ankyrin-binding protein which may be involved in neurite extension, axonal guidance, synaptogenesis, myelination and neuron-glial cell interactions; Fibronectin type III domain containing (1240 aa)
     
 
  0.965
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (14%) [HD]