STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ATP8A2Phospholipid-transporting ATPase IB; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules. Reconstituted to liposomes, the ATP8A2:TMEM30A flippase complex predomiminantly transports phosphatidylserine (PS) and to a lesser extent phosphatidylethanolamine (PE). [...] (1188 aa)    
Predicted Functional Partners:
TMEM30A
Cell cycle control protein 50A; Accessory component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules. The beta subunit may assist in binding of the phospholipid substrate. Required for the proper folding, assembly and ER to Golgi exit of the ATP8A2:TMEM30A flippase complex. [...]
   
 
 0.980
RNF6
E3 ubiquitin-protein ligase RNF6; E3 ubiquitin-protein ligase mediating 'Lys-48'-linked polyubiquitination of LIMK1 and its subsequent targeting to the proteasome for degradation. Negatively regulates axonal outgrowth through regulation of the LIMK1 turnover. Mediates 'Lys-6' and 'Lys-27'-linked polyubiquitination of AR/androgen receptor thereby modulating its transcriptional activity. May also bind DNA and function as a transcriptional regulator; Ring finger proteins
   
  
 0.835
TMEM30B
Cell cycle control protein 50B; Accessory component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules. The beta subunit may assist in binding of the phospholipid substrate (Probable). Can mediate the export of alpha subunits ATP8A1, ATP8B1, ATP8B2 and ATP8B4 from the ER to th [...]
   
 
 0.786
TMEM30C
Cell cycle control protein 50C; Transmembrane protein 30C; Belongs to the CDC50/LEM3 family
   
 
 0.783
ATP1B3
Sodium/potassium-transporting ATPase subunit beta-3; This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-3 subunit is not known; ATPase Na+/K+ transporting subunits
   
 
 0.686
CRYL1
L-gulonate 3-dehydrogenase; Lambda-crystallin homolog; Crystallin lambda 1
      
 0.660
AP4M1
AP-4 complex subunit mu-1; Component of the adaptor protein complex 4 (AP-4). Adaptor protein complexes are vesicle coat components involved both in vesicle formation and cargo selection. They control the vesicular transport of proteins in different trafficking pathways. AP-4 forms a non clathrin- associated coat on vesicles departing the trans-Golgi network (TGN) and may be involved in the targeting of proteins from the trans-Golgi network (TGN) to the endosomal-lysosomal system. It is also involved in protein sorting to the basolateral membrane in epithelial cells and the proper asym [...]
   
  
 0.651
PWP1
Periodic tryptophan protein 1 homolog; May play an important role in cell growth and/or transcription; Belongs to the WD repeat PWP1 family
      
 0.645
DCAF11
DDB1- and CUL4-associated factor 11; May function as a substrate receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex; DDB1 and CUL4 associated factors
   
 
 0.642
DTX3L
E3 ubiquitin-protein ligase DTX3L; E3 ubiquitin-protein ligase which, in association with ADP-ribosyltransferase PARP9, plays a role in DNA damage repair and in interferon-mediated antiviral responses. Monoubiquitinates several histones, including histone H2A, H2B, H3 and H4. In response to DNA damage, mediates monoubiquitination of 'Lys-91' of histone H4 (H4K91ub1). The exact role of H4K91ub1 in DNA damage response is still unclear but it may function as a licensing signal for additional histone H4 post-translational modifications such as H4 'Lys-20' methylation (H4K20me). PARP1-depen [...]
      
 0.638
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (8%) [HD]