• Version:
  • 11.0 (preview - - version 10.5 still available here)
SACM1L protein (human) - STRING interaction network
"SACM1L" - Phosphatidylinositide phosphatase SAC1 in Homo sapiens
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
SACM1LPhosphatidylinositide phosphatase SAC1; Phosphoinositide phosphatase that hydrolyzes phosphatidylinositol 3-phosphate (PtdIns(3)P) and phosphatidylinositol 4-phosphate (PtdIns(4)P). Has low activity towards PtdIns(3,5)P2 (By similarity) (587 aa)    
Predicted Functional Partners:
72 kDa inositol polyphosphate 5-phosphatase; Converts phosphatidylinositol 3,4,5-trisphosphate (PtdIns 3,4,5-P3) to PtdIns-P2, and phosphatidylinositol 4,5- bisphosphate to phosphatidylinositol 4-phosphate. Specific for lipid substrates, inactive towards water soluble inositol phosphates; Phosphoinositide phosphatases (644 aa)
1-phosphatidylinositol 3-phosphate 5-kinase; The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Catalyzes the phosphorylation of phosphatidylinositol 3-phosphate on the fifth hydroxyl of the myo- inositol ring, to form phosphatidylinositol 3,5-bisphosphate. Required for endocytic-vacuolar pathway and nuclear migration. Plays a role in the biogenesis of endosome carrier vesicles (ECV)/ multivesicular bodies (MVB) transport intermediates from early endosomes; Zinc fingers FYVE-type (2098 aa)
Phosphatidylinositol 3-kinase catalytic subunit type 3; Catalytic subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways- PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis. Involved in regulation of degradative endocytic trafficking and required for the abcission step in cytokinesis, probably in the context of PI3KC3-C2. Involved in the transport of lysosomal enzyme precursors to lysosomes. Requ [...] (887 aa)
Phosphatidylinositol 4-kinase beta; Phosphorylates phosphatidylinositol (PI) in the first committed step in the production of the second messenger inositol- 1,4,5,-trisphosphate (PIP). May regulate Golgi disintegration/reorganization during mitosis, possibly via its phosphorylation. Involved in Golgi-to-plasma membrane trafficking (By similarity); Belongs to the PI3/PI4-kinase family. Type III PI4K subfamily (828 aa)
CDP-diacylglycerol--inositol 3-phosphatidyltransferase; Catalyzes the biosynthesis of phosphatidylinositol (PtdIns) as well as PtdIns-inositol exchange reaction. May thus act to reduce an excessive cellular PtdIns content. The exchange activity is due to the reverse reaction of PtdIns synthase and is dependent on CMP, which is tightly bound to the enzyme (213 aa)
Inositol polyphosphate 5-phosphatase OCRL-1; Converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 4-phosphate. Also converts inositol 1,4,5- trisphosphate to inositol 1,4-bisphosphate and inositol 1,3,4,5- tetrakisphosphate to inositol 1,3,4-trisphosphate. May function in lysosomal membrane trafficking by regulating the specific pool of phosphatidylinositol 4,5-bisphosphate that is associated with lysosomes. Involved in primary cilia assembly; Belongs to the inositol 1,4,5-trisphosphate 5- phosphatase type II family (901 aa)
Type II inositol 1,4,5-trisphosphate 5-phosphatase; Hydrolyzes phosphatidylinositol 4,5-bisphosphate (PtIns(4,5)P2) and the signaling molecule phosphatidylinositol 1,4,5-trisphosphate (PtIns(1,4,5)P3), and thereby modulates cellular signaling events; Phosphoinositide phosphatases (913 aa)
Phosphatidylinositol 4-kinase alpha; Acts on phosphatidylinositol (PtdIns) in the first committed step in the production of the second messenger inositol- 1,4,5,-trisphosphate; Belongs to the PI3/PI4-kinase family. Type III PI4K subfamily (2102 aa)
Golgi phosphoprotein 3; Phosphatidylinositol-4-phosphate-binding protein that links Golgi membranes to the cytoskeleton and may participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus. May also bind to the coatomer to regulate Golgi membrane trafficking. May play a role in anterograde transport from the Golgi to the plasma membrane and regulate secretion. Has also been involved in the control of the localization of Golgi enzymes through inter [...] (298 aa)
Phosphatidylinositol 4-phosphate 5-kinase type-1 beta; Participates in the biosynthesis of phosphatidylinositol 4,5-bisphosphate. Mediates RAC1-dependent reorganization of actin filaments. Contributes to the activation of PLD2. Together with PIP5K1A is required after stimulation of G-protein coupled receptors for stable platelet adhesion (By similarity) (540 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (7%) [HD]