STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
TNRC6ATrinucleotide repeat-containing gene 6A protein; Plays a role in RNA-mediated gene silencing by both micro- RNAs (miRNAs) and short interfering RNAs (siRNAs). Required for miRNA- dependent repression of translation and for siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins. As a scaffolding protein, associates with argonaute proteins bound to partially complementary mRNAs, and can simultaneously recruit CCR4-NOT and PAN deadenylase complexes. (1962 aa)    
Predicted Functional Partners:
AGO2
Protein argonaute-2; Required for RNA-mediated gene silencing (RNAi) by the RNA- induced silencing complex (RISC). The 'minimal RISC' appears to include AGO2 bound to a short guide RNA such as a microRNA (miRNA) or short interfering RNA (siRNA). These guide RNAs direct RISC to complementary mRNAs that are targets for RISC-mediated gene silencing. The precise mechanism of gene silencing depends on the degree of complementarity between the miRNA or siRNA and its target. Binding of RISC to a perfectly complementary mRNA generally results in silencing due to endonucleolytic cleavage of the [...]
   
 0.999
AGO1
Protein argonaute-1; Required for RNA-mediated gene silencing (RNAi). Binds to short RNAs such as microRNAs (miRNAs) or short interfering RNAs (siRNAs), and represses the translation of mRNAs which are complementary to them. Lacks endonuclease activity and does not appear to cleave target mRNAs. Also required for transcriptional gene silencing (TGS) of promoter regions which are complementary to bound short antigene RNAs (agRNAs).
    
 0.999
DICER1
Endoribonuclease Dicer; Double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing. Cleaves naturally occurring long dsRNAs and short hairpin pre-microRNAs (miRNA) into fragments of twenty-one to twenty-three nucleotides with 3' overhang of two nucleotides, producing respectively short interfering RNAs (siRNA) and mature microRNAs. SiRNAs and miRNAs serve as guide to direct the RNA-induced silencing complex (RISC) to complementary RNAs to degrade them or prevent their translation. Gene silencing mediated by siRNAs, al [...]
   
 
 0.998
DDX6
Probable ATP-dependent RNA helicase DDX6; In the process of mRNA degradation, plays a role in mRNA decapping. Blocks autophagy in nutrient-rich conditions by repressing the expression of ATG-related genes through degradation of their transcripts. Belongs to the DEAD box helicase family. DDX6/DHH1 subfamily.
   
 0.998
PABPC1
Polyadenylate-binding protein 1; Binds the poly(A) tail of mRNA, including that of its own transcript, and regulates processes of mRNA metabolism such as pre-mRNA splicing and mRNA stability. Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Involved in translationally coupled mRNA turnover. Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region deter [...]
    
 
 0.997
CNOT1
CCR4-NOT transcription complex subunit 1; Scaffolding component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Its scaffolding function implies its interaction with the catalytic complex module and diverse RNA-binding proteins mediating the complex recruitment to selected mRN [...]
   
 
 0.997
TARBP2
RISC-loading complex subunit TARBP2; Required for formation of the RNA induced silencing complex (RISC). Component of the RISC loading complex (RLC), also known as the micro-RNA (miRNA) loading complex (miRLC), which is composed of DICER1, AGO2 and TARBP2. Within the RLC/miRLC, DICER1 and TARBP2 are required to process precursor miRNAs (pre-miRNAs) to mature miRNAs and then load them onto AGO2. AGO2 bound to the mature miRNA constitutes the minimal RISC and may subsequently dissociate from DICER1 and TARBP2. May also play a role in the production of short interfering RNAs (siRNAs) from [...]
     
 0.993
AGO4
Protein argonaute-4; Required for RNA-mediated gene silencing (RNAi). Binds to short RNAs such as microRNAs (miRNAs) and represses the translation of mRNAs which are complementary to them. Lacks endonuclease activity and does not appear to cleave target mRNAs. Also required for RNA-directed transcription and replication of the human hapatitis delta virus (HDV). Belongs to the argonaute family. Ago subfamily.
    
 0.990
AGO3
Protein argonaute-3; Required for RNA-mediated gene silencing (RNAi). Binds to short RNAs such as microRNAs (miRNAs) and represses the translation of mRNAs which are complementary to them. Proposed to be involved in stabilization of small RNA derivates (riRNA) derived from processed RNA polymerase III-transcribed Alu repeats containing a DR2 retinoic acid response element (RARE) in stem cells and in the subsequent riRNA- dependent degradation of a subset of RNA polymerase II-transcribed coding mRNAs by recruiting a mRNA decapping complex involving EDC4. Possesses RNA slicer activity bu [...]
   
 0.987
DCP2
m7GpppN-mRNA hydrolase; Decapping metalloenzyme that catalyzes the cleavage of the cap structure on mRNAs. Removes the 7- methyl guanine cap structure from mRNA molecules, yielding a 5'- phosphorylated mRNA fragment and 7m-GDP. Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense- mediated mRNA decay. Plays a role in replication- dependent histone mRNA degradation. Has higher activity towards mRNAs that lack a poly(A) tail. Has no activity towards a cap structure lacking an RNA moiety. The presence of a N(6)-methyladenosine methylation at the second tran [...]
    
 0.979
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (14%) [HD]