close STRING Data Update
The upcoming version of STRING is available for preview: it includes new data, new enrichment categories (e.g. diseases and tissues) and covers 14000 fully sequenced genomes.
STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
FUT2Galactoside 2-alpha-L-fucosyltransferase 2; Mediates the transfer of fucose to the terminal galactose on glycan chains of cell surface glycoproteins and glycolipids. The resulting epitope plays a role in cell-cell interaction including host-microbe interaction. Mediates interaction with intestinal microbiota influencing its composition. Creates a soluble precursor oligosaccharide FuC-alpha ((1,2)Galbeta-) called the H antigen which is an essential substrate for the final step in the soluble ABO blood group antigen synthesis pathway; Belongs to the glycosyltransferase 11 family (343 aa)    
Predicted Functional Partners:
FUT3
Galactoside 3(4)-L-fucosyltransferase; May catalyze alpha-1,3 and alpha-1,4 glycosidic linkages involved in the expression of Vim-2, Lewis A, Lewis B, sialyl Lewis X and Lewis X/SSEA-1 antigens. May be involved in blood group Lewis determination; Lewis-positive (Le(+)) individuals have an active enzyme while Lewis-negative (Le(-)) individuals have an inactive enzyme. Also acts on the corresponding 1,4-galactosyl derivative, forming 1,3-L-fucosyl links
   
 
 0.983
FUT5
Alpha-(1,3)-fucosyltransferase 5; May catalyze alpha-1,3 glycosidic linkages involved in the expression of VIM-2, Lewis X/SSEA-1 and sialyl Lewis X antigens; Fucosyltransferases
   
 
 0.976
FUT6
Alpha-(1,3)-fucosyltransferase 6; Enzyme involved in the biosynthesis of the E-Selectin ligand, sialyl-Lewis X. Catalyzes the transfer of fucose from GDP- beta-fucose to alpha-2,3 sialylated substrates; Fucosyltransferases
   
 
 0.971
FUT4
Alpha-(1,3)-fucosyltransferase 4; May catalyze alpha-1,3 glycosidic linkages involved in the expression of Lewis X/SSEA-1 and VIM-2 antigens; CD molecules
   
 
 0.970
ABO
Histo-blood group ABO system transferase; This protein is the basis of the ABO blood group system. The histo-blood group ABO involves three carbohydrate antigens: A, B, and H. A, B, and AB individuals express a glycosyltransferase activity that converts the H antigen to the A antigen (by addition of UDP-GalNAc) or to the B antigen (by addition of UDP-Gal), whereas O individuals lack such activity
   
 
 0.966
FUT9
Alpha-(1,3)-fucosyltransferase 9; Transfers a fucose to lacto-N-neotetraose but not to either alpha2,3-sialyl lacto-N-neotetraose or lacto-N-tetraose. Can catalyze the last step in the biosynthesis of Lewis antigen, the addition of a fucose to precursor polysaccharides; Belongs to the glycosyltransferase 10 family
     
 0.959
B3GALT5
Beta-1,3-galactosyltransferase 5; Catalyzes the transfer of Gal to GlcNAc-based acceptors with a preference for the core3 O-linked glycan GlcNAc(beta1,3)GalNAc structure. Can use glycolipid LC3Cer as an efficient acceptor; Belongs to the glycosyltransferase 31 family
   
 
 0.958
B3GALT1
Beta-1,3-galactosyltransferase 1; Beta-1,3-galactosyltransferase that transfers galactose from UDP-alpha-D-galactose to substrates with a terminal beta-N- acetylglucosamine (beta-GlcNAc) residue. Involved in the biosynthesis of the carbohydrate moieties of glycolipids and glycoproteins. Inactive towards substrates with terminal alpha-N- acetylglucosamine (alpha-GlcNAc) or alpha-N-acetylgalactosamine (alpha-GalNAc) residues
   
 
 0.946
ST3GAL1
CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1; Responsible for the synthesis of the sequence NeuAc- alpha-2,3-Gal-beta-1,3-GalNAc- found on sugar chains O-linked to Thr or Ser and also as a terminal sequence on certain gangliosides. SIAT4A and SIAT4B sialylate the same acceptor substrates but exhibit different Km values; Belongs to the glycosyltransferase 29 family
   
 
 0.946
ST3GAL4
CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 4; Catalyzes the formation of the NeuAc-alpha-2,3-Gal-beta- 1,4-GlcNAc-, and NeuAc-alpha-2,3-Gal-beta-1,3-GlcNAc- sequences found in terminal carbohydrate groups of glycoproteins and glycolipids. It may be involved in the biosynthesis of the sialyl Lewis X determinant; Belongs to the glycosyltransferase 29 family
   
 
 0.946
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (9%) [HD]