STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
TSEN34tRNA-splicing endonuclease subunit Sen34; Constitutes one of the two catalytic subunit of the tRNA- splicing endonuclease complex, a complex responsible for identification and cleavage of the splice sites in pre-tRNA. It cleaves pre-tRNA at the 5'- and 3'-splice sites to release the intron. The products are an intron and two tRNA half-molecules bearing 2',3'-cyclic phosphate and 5'-OH termini. There are no conserved sequences at the splice sites, but the intron is invariably located at the same site in the gene, placing the splice sites an invariant distance from the constant structura [...] (315 aa)    
Predicted Functional Partners:
TSEN2
tRNA-splicing endonuclease subunit Sen2; Constitutes one of the two catalytic subunit of the tRNA- splicing endonuclease complex, a complex responsible for identification and cleavage of the splice sites in pre-tRNA. It cleaves pre-tRNA at the 5'- and 3'-splice sites to release the intron. The products are an intron and two tRNA half-molecules bearing 2',3'-cyclic phosphate and 5'-OH termini. There are no conserved sequences at the splice sites, but the intron is invariably located at the same site in the gene, placing the splice sites an invariant distance from the constant structural [...]
    
 0.999
TSEN54
tRNA-splicing endonuclease subunit Sen54; Non-catalytic subunit of the tRNA-splicing endonuclease complex, a complex responsible for identification and cleavage of the splice sites in pre-tRNA. It cleaves pre-tRNA at the 5' and 3' splice sites to release the intron. The products are an intron and two tRNA half-molecules bearing 2',3' cyclic phosphate and 5'-OH termini. There are no conserved sequences at the splice sites, but the intron is invariably located at the same site in the gene, placing the splice sites an invariant distance from the constant structural features of the tRNA bo [...]
   
 0.999
TSEN15
tRNA-splicing endonuclease subunit Sen15; Non-catalytic subunit of the tRNA-splicing endonuclease complex, a complex responsible for identification and cleavage of the splice sites in pre-tRNA. It cleaves pre-tRNA at the 5' and 3' splice sites to release the intron. The products are an intron and two tRNA half-molecules bearing 2',3' cyclic phosphate and 5'-OH termini. There are no conserved sequences at the splice sites, but the intron is invariably located at the same site in the gene, placing the splice sites an invariant distance from the constant structural features of the tRNA bo [...]
    
 0.999
CLP1
Polyribonucleotide 5'-hydroxyl-kinase Clp1; Polynucleotide kinase that can phosphorylate the 5'-hydroxyl groups of double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), double-stranded DNA (dsDNA) and double-stranded DNA:RNA hybrids. dsRNA is phosphorylated more efficiently than dsDNA, and the RNA component of a DNA:RNA hybrid is phosphorylated more efficiently than the DNA component. Plays a key role in both tRNA splicing and mRNA 3'-end formation. Component of the tRNA splicing endonuclease complex: phosphorylates the 5'-terminus of the tRNA 3'-exon during tRNA splicing; this pho [...]
   
 0.969
CPSF4
Cleavage and polyadenylation specificity factor subunit 4; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. CPSF4 binds RNA polymers with a preference for poly(U).
   
 
  0.808
CSTF2
Cleavage stimulation factor subunit 2; One of the multiple factors required for polyadenylation and 3'-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs (By similarity).
   
  0.807
CPSF1
Cleavage and polyadenylation specificity factor subunit 1; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. This subunit is involved in the RNA recognition step of the polyadenylation reaction.
   
 
  0.805
RARS2
Probable arginine--tRNA ligase, mitochondrial; arginyl-tRNA synthetase 2, mitochondrial.
   
  
 0.776
SEPSECS
O-phosphoseryl-tRNA(Sec) selenium transferase; Converts O-phosphoseryl-tRNA(Sec) to selenocysteinyl- tRNA(Sec) required for selenoprotein biosynthesis. Belongs to the SepSecS family.
      
 0.703
RTCB
RNA-splicing ligase RtcB homolog; Catalytic subunit of the tRNA-splicing ligase complex that acts by directly joining spliced tRNA halves to mature-sized tRNAs by incorporating the precursor-derived splice junction phosphate into the mature tRNA as a canonical 3',5'-phosphodiester. May act as an RNA ligase with broad substrate specificity, and may function toward other RNAs.
  
 
 0.656
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: medium (52%) [HD]