STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
C16orf53PAXIP1-associated glutamate-rich protein 1; Its association with the histone methyltransferase MLL2/MLL3 complex is suggesting a role in epigenetic transcriptional activation. However, in association with PAXIP1/PTIP is proposed to function at least in part independently of the MLL2/MLL3 complex. Proposed to be recruited by PAXIP1 to sites of DNA damage where the PAGR1:PAXIP1 complex is required for cell survival in response to DNA damage independently of the MLL2/MLL3 complex. However, its function in DNA damage has been questioned (By similarity). During immunoglobulin class switchin [...] (254 aa)    
Predicted Functional Partners:
PAXIP1
PAX-interacting protein 1; Involved in DNA damage response and in transcriptional regulation through histone methyltransferase (HMT) complexes. Plays a role in early development. In DNA damage response is required for cell survival after ionizing radiation. In vitro shown to be involved in the homologous recombination mechanism for the repair of double-strand breaks (DSBs). Its localization to DNA damage foci requires RNF8 and UBE2N. Recruits TP53BP1 to DNA damage foci and, at least in particular repair processes, effective DNA damage response appears to require the association with TP [...]
    
 0.977
DPY30
Protein dpy-30 homolog; As part of the MLL1/MLL complex, involved in the methylation of histone H3 at 'Lys-4', particularly trimethylation. Histone H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. May play some role in histone H3 acetylation. In a teratocarcinoma cell, plays a crucial role in retinoic acid-induced differentiation along the neural lineage, regulating gene induction and H3 'Lys-4' methylation at key developmental loci. May also play an indirect or direct role in endosomal transport; Belongs to the dpy-30 family
   
 
 0.974
ASH2L
Set1/Ash2 histone methyltransferase complex subunit ASH2; Component of the Set1/Ash2 histone methyltransferase (HMT) complex, a complex that specifically methylates 'Lys-4' of histone H3, but not if the neighboring 'Lys-9' residue is already methylated. As part of the MLL1/MLL complex it is involved in methylation and dimethylation at 'Lys-4' of histone H3. May function as a transcriptional regulator. May play a role in hematopoiesis; PHD finger proteins
     
 0.973
KMT2C
Histone-lysine N-methyltransferase 2C; Histone methyltransferase. Methylates 'Lys-4' of histone H3. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. Central component of the MLL2/3 complex, a coactivator complex of nuclear receptors, involved in transcriptional coactivation. KMT2C/MLL3 may be a catalytic subunit of this complex. May be involved in leukemogenesis and developmental disorder; Lysine methyltransferases
    
 0.972
RBBP5
Retinoblastoma-binding protein 5; In embryonic stem (ES) cells, plays a crucial role in the differentiation potential, particularly along the neural lineage, regulating gene induction and H3 'Lys-4' methylation at key developmental loci, including that mediated by retinoic acid (By similarity). As part of the MLL1/MLL complex, involved in mono-, di- and trimethylation at 'Lys-4' of histone H3. Histone H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation; WD repeat domain containing
     
 0.970
KMT2D
Histone-lysine N-methyltransferase 2D; Histone methyltransferase. Methylates 'Lys-4' of histone H3 (H3K4me). H3K4me represents a specific tag for epigenetic transcriptional activation. Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription; Belongs to the class V-like SAM-binding methyltransferase superfamily. Histone-lysine methyltransferase family. TRX/MLL subfamily
    
 0.966
WDR5
WD repeat-containing protein 5; Contributes to histone modification. May position the N- terminus of histone H3 for efficient trimethylation at 'Lys-4'. As part of the MLL1/MLL complex it is involved in methylation and dimethylation at 'Lys-4' of histone H3. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. May regulate osteoblasts differentiation; Belongs to the WD repeat WDR5/wds family
   
 
 0.962
KDM6A
Lysine-specific demethylase 6A; Histone demethylase that specifically demethylates 'Lys- 27' of histone H3, thereby playing a central role in histone code. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-27'. Plays a central role in regulation of posterior development, by regulating HOX gene expression. Demethylation of 'Lys-27' of histone H3 is concomitant with methylation of 'Lys-4' of histone H3, and regulates the recruitment of the PRC1 complex and monoubiquitination of histone H2A. Plays a demethylase-independent role in chromatin remodeling to regulate [...]
     
 0.938
PA1
PAXIP1 associated glutamate rich protein 1; Its association with the histone methyltransferase MLL2/MLL3 complex is suggesting a role in epigenetic transcriptional activation. However, in association with PAXIP1/PTIP is proposed to function at least in part independently of the MLL2/MLL3 complex. Proposed to be recruited by PAXIP1 to sites of DNA damage where the PAGR1:PAXIP1 complex is required for cell survival in response to DNA damage independently of the MLL2/MLL3 complex. However, its function in DNA damage has been questioned (By similarity). During immunoglobulin class switchin [...]
     
 
0.900
ASPHD1
Aspartate beta-hydroxylase domain containing 1
      
 0.744
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (10%) [HD]