STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ACACAAcetyl-CoA carboxylase 1; Catalyzes the rate-limiting reaction in the biogenesis of long-chain fatty acids. Carries out three functions: biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase (2383 aa)    
Predicted Functional Partners:
FASN
Fatty acid synthase; Fatty acid synthetase catalyzes the formation of long- chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. This multifunctional protein has 7 catalytic activities and an acyl carrier protein; Seven-beta-strand methyltransferase motif containing
  
 
 0.996
ACLY
ATP-citrate synthase; ATP-citrate synthase is the primary enzyme responsible for the synthesis of cytosolic acetyl-CoA in many tissues. Has a central role in de novo lipid synthesis. In nervous tissue it may be involved in the biosynthesis of acetylcholine; In the N-terminal section; belongs to the succinate/malate CoA ligase beta subunit family
   
 
 0.988
HLCS
Biotin--protein ligase; Post-translational modification of specific protein by attachment of biotin. Acts on various carboxylases such as acetyl- CoA-carboxylase, pyruvate carboxylase, propionyl CoA carboxylase, and 3-methylcrotonyl CoA carboxylase
  
 
 0.988
PRKAA1
5'-AMP-activated protein kinase catalytic subunit alpha-1; Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts a [...]
   
 0.977
PRKAA2
5'-AMP-activated protein kinase catalytic subunit alpha-2; Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts a [...]
   
 0.976
MCAT
Malonyl-CoA-acyl carrier protein transacylase, mitochondrial; Catalyzes the transfer of a malonyl moiety from malonyl- CoA to the free thiol group of the phosphopantetheine arm of the mitochondrial ACP protein (NDUFAB1). This suggests the existence of the biosynthesis of fatty acids in mitochondria
  
 0.974
ACSS2
Acetyl-coenzyme A synthetase, cytoplasmic; Activates acetate so that it can be used for lipid synthesis or for energy generation; Acyl-CoA synthetase family
  
 0.969
ACSS1
Acetyl-coenzyme A synthetase 2-like, mitochondrial; Important for maintaining normal body temperature during fasting and for energy homeostasis. Essential for energy expenditure under ketogenic conditions (By similarity). Converts acetate to acetyl-CoA so that it can be used for oxidation through the tricarboxylic cycle to produce ATP and CO(2); Belongs to the ATP-dependent AMP-binding enzyme family
  
 0.959
PRKAG1
5'-AMP-activated protein kinase subunit gamma-1; AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a [...]
   
 0.955
PRKAB1
5'-AMP-activated protein kinase subunit beta-1; Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a reg [...]
   
 0.947
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (14%) [HD]