node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
OOV88331.1 | OOV88332.1 | BTA35_0202095 | BTA35_0202100 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.732 |
OOV88331.1 | OOV88333.1 | BTA35_0202095 | BTA35_0202105 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.732 |
OOV88331.1 | dnaJ | BTA35_0202095 | BTA35_0214655 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.967 |
OOV88331.1 | groL | BTA35_0202095 | BTA35_0202470 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Chaperonin GroL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.926 |
OOV88331.1 | groS | BTA35_0202095 | BTA35_0202465 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Co-chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.886 |
OOV88331.1 | grpE | BTA35_0202095 | BTA35_0214645 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Nucleotide exchange factor GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds [...] | 0.972 |
OOV88331.1 | guaB | BTA35_0202095 | BTA35_0204540 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. | 0.518 |
OOV88331.1 | hslU | BTA35_0202095 | BTA35_0215440 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | HslU--HslV peptidase ATPase subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.628 |
OOV88331.1 | htpG | BTA35_0202095 | BTA35_0214125 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone HtpG; Molecular chaperone. Has ATPase activity. | 0.983 |
OOV88332.1 | OOV88331.1 | BTA35_0202100 | BTA35_0202095 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.732 |
OOV88332.1 | OOV88333.1 | BTA35_0202100 | BTA35_0202105 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.773 |
OOV88332.1 | dnaJ | BTA35_0202100 | BTA35_0214655 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.967 |
OOV88332.1 | groL | BTA35_0202100 | BTA35_0202470 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Chaperonin GroL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.926 |
OOV88332.1 | groS | BTA35_0202100 | BTA35_0202465 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Co-chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.886 |
OOV88332.1 | grpE | BTA35_0202100 | BTA35_0214645 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Nucleotide exchange factor GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds [...] | 0.972 |
OOV88332.1 | guaB | BTA35_0202100 | BTA35_0204540 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. | 0.518 |
OOV88332.1 | hslU | BTA35_0202100 | BTA35_0215440 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | HslU--HslV peptidase ATPase subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.628 |
OOV88332.1 | htpG | BTA35_0202100 | BTA35_0214125 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone HtpG; Molecular chaperone. Has ATPase activity. | 0.983 |
OOV88333.1 | OOV88331.1 | BTA35_0202105 | BTA35_0202095 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.732 |
OOV88333.1 | OOV88332.1 | BTA35_0202105 | BTA35_0202100 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.773 |