STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AKO96982.1Hypothetical protein. (355 aa)    
Predicted Functional Partners:
prfA
Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA.
  
 
 0.905
plsX
Fatty acid/phospholipid synthesis protein PlsX; Catalyzes the reversible formation of acyl-phosphate (acyl- PO(4)) from acyl-[acyl-carrier-protein] (acyl-ACP). This enzyme utilizes acyl-ACP as fatty acyl donor, but not acyl-CoA.
   
    0.511
atpE
ATP synthase subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
   0.479
atpH
ATP synthase, F1 delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
   0.466
AKO96983.1
ABC-type dipeptide transport system, periplasmic component.
       0.440
atpG
ATP synthase, F1 gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
  
   0.431
atpA
Proton translocating ATP synthase, F1 alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
  
   0.429
atpC
ATP synthase, F1 epsilon subunit (delta in mitochondria); Produces ATP from ADP in the presence of a proton gradient across the membrane.
  
   0.409
atpD
ATP synthase, F1 beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits.
  
   0.408
AKO96981.1
ABC-type dipeptide transport system, periplasmic component.
       0.408
Your Current Organism:
Marinovum algicola
NCBI taxonomy Id: 988812
Other names: M. algicola DG 898, Marinovum algicola DG 898, Marinovum algicola str. DG 898, Marinovum algicola strain DG 898
Server load: low (26%) [HD]