STRINGSTRING
COX2 protein (Bos taurus) - STRING interaction network
"COX2" - Cytochrome c oxidase subunit 2 in Bos taurus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
COX2Cytochrome c oxidase subunit 2; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1- 3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1 (227 aa)    
Predicted Functional Partners:
COX1
Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1- 3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B (514 aa)
  0.999
COX3
Cytochrome c oxidase subunit 3; Subunits I, II and III form the functional core of the enzyme complex (260 aa)
 
  0.999
CYTB
Cytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex) that is part of the mitochondrial respiratory chain. The b-c1 complex mediates electron transfer from ubiquinol to cytochrome c. Contributes to the generation of a proton gradient across the mitochondrial membrane that is then used for ATP synthesis (379 aa)
 
  0.999
COX5B
Cytochrome c oxidase subunit 5B, mitochondrial; This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport (129 aa)
     
  0.999
COX4I1
Cytochrome c oxidase subunit 4 isoform 1, mitochondrial; This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport (169 aa)
     
  0.999
COX5A
Cytochrome c oxidase subunit 5A, mitochondrial; This is the heme A-containing chain of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport (152 aa)
     
  0.998
MGC148714
Cytochrome c oxidase subunit 6C; This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport (74 aa)
     
  0.998
ATP6
ATP synthase subunit a; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subuni [...] (226 aa)
   
   
  0.998
COX7CP1
Cytochrome c oxidase subunit 7C, mitochondrial; This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport (63 aa)
     
  0.998
ND1
NADH-ubiquinone oxidoreductase chain 1; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (318 aa)
     
   
  0.996
Your Current Organism:
Bos taurus
NCBI taxonomy Id: 9913
Other names: B. taurus, Bos bovis, Bos primigenius taurus, Bos taurus, Bovidae sp. Adi Nefas, bovine, cattle, cow, domestic cattle, domestic cow
Server load: low (14%) [HD]