node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
amtB | glnA | STM0463 | STM4007 | Putative Amt family, ammonium transport protein; Similar to E. coli probable ammonium transporter (AAC73554.1); Blastp hit to AAC73554.1 (428 aa), 92% identity in aa 1 - 428. | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | 0.929 |
amtB | glnB | STM0463 | STM2561 | Putative Amt family, ammonium transport protein; Similar to E. coli probable ammonium transporter (AAC73554.1); Blastp hit to AAC73554.1 (428 aa), 92% identity in aa 1 - 428. | Regulatory protein (P-II) for nitrogen assimilation by glutamine synthetase (ATase); P-II indirectly controls the transcription of the glutamine synthetase gene (GlnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme (By similarity). | 0.999 |
amtB | glnD | STM0463 | STM0214 | Putative Amt family, ammonium transport protein; Similar to E. coli probable ammonium transporter (AAC73554.1); Blastp hit to AAC73554.1 (428 aa), 92% identity in aa 1 - 428. | Uridylyltransferase; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins (GlnB and homologs), in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen assimilation and metabolism. | 0.941 |
amtB | glnE | STM0463 | STM3201 | Putative Amt family, ammonium transport protein; Similar to E. coli probable ammonium transporter (AAC73554.1); Blastp hit to AAC73554.1 (428 aa), 92% identity in aa 1 - 428. | Adenylyl transferase for glutamine synthetase; Involved in the regulation of glutamine synthetase GlnA, a key enzyme in the process to assimilate ammonia. When cellular nitrogen levels are high, the C-terminal adenylyl transferase (AT) inactivates GlnA by covalent transfer of an adenylyl group from ATP to specific tyrosine residue of GlnA, thus reducing its activity. Conversely, when nitrogen levels are low, the N-terminal adenylyl removase (AR) activates GlnA by removing the adenylyl group by phosphorolysis, increasing its activity. The regulatory region of GlnE binds the signal trans [...] | 0.415 |
amtB | glnG | STM0463 | STM4005 | Putative Amt family, ammonium transport protein; Similar to E. coli probable ammonium transporter (AAC73554.1); Blastp hit to AAC73554.1 (428 aa), 92% identity in aa 1 - 428. | EBP family response regulator in two-component regulatory system with GlnL; Member of the two-component regulatory system NtrB/NtrC, which controls expression of the nitrogen-regulated (ntr) genes in response to nitrogen limitation. Phosphorylated NtrC binds directly to DNA and stimulates the formation of open promoter-sigma54-RNA polymerase complexes. | 0.809 |
amtB | glnK | STM0463 | STM0462 | Putative Amt family, ammonium transport protein; Similar to E. coli probable ammonium transporter (AAC73554.1); Blastp hit to AAC73554.1 (428 aa), 92% identity in aa 1 - 428. | Regulatory protein P-II 2; Nitrogen assimilation by glutamine synthetase; regulates GlnL (NRII) and GlnE (ATase); similar to E. coli nitrogen regulatory protein P-II 2 (AAC73553.1); Blastp hit to AAC73553.1 (112 aa), 97% identity in aa 1 - 112. | 0.999 |
amtB | glnL | STM0463 | STM4006 | Putative Amt family, ammonium transport protein; Similar to E. coli probable ammonium transporter (AAC73554.1); Blastp hit to AAC73554.1 (428 aa), 92% identity in aa 1 - 428. | Sensory histidine kinase/phosphatase NtrB; Member of the two-component regulatory system NtrB/NtrC, which controls expression of the nitrogen-regulated (ntr) genes in response to nitrogen limitation. Under conditions of nitrogen limitation, NtrB autophosphorylates and transfers the phosphoryl group to NtrC. In the presence of nitrogen, acts as a phosphatase that dephosphorylates and inactivates NtrC. | 0.916 |
amtB | rpoN | STM0463 | STM3320 | Putative Amt family, ammonium transport protein; Similar to E. coli probable ammonium transporter (AAC73554.1); Blastp hit to AAC73554.1 (428 aa), 92% identity in aa 1 - 428. | Sigma N factor of RNA polymerase; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is responsible for the expression of enzymes involved in arginine catabolism. The open complex (sigma-54 and core RNA polymerase) serves as the receptor for the receipt of the melting signal from the remotely bound activator protein GlnG(NtrC). | 0.413 |
dapD | glnD | STM0213 | STM0214 | Similar to E. coli 2,3,4,5-tetrahydropyridine-2-carboxylate N-succinyltransferase (AAC73277.1); Blastp hit to AAC73277.1 (274 aa), 97% identity in aa 1 - 274; Belongs to the transferase hexapeptide repeat family. | Uridylyltransferase; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins (GlnB and homologs), in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen assimilation and metabolism. | 0.753 |
glnA | amtB | STM4007 | STM0463 | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | Putative Amt family, ammonium transport protein; Similar to E. coli probable ammonium transporter (AAC73554.1); Blastp hit to AAC73554.1 (428 aa), 92% identity in aa 1 - 428. | 0.929 |
glnA | glnB | STM4007 | STM2561 | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | Regulatory protein (P-II) for nitrogen assimilation by glutamine synthetase (ATase); P-II indirectly controls the transcription of the glutamine synthetase gene (GlnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme (By similarity). | 0.870 |
glnA | glnD | STM4007 | STM0214 | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | Uridylyltransferase; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins (GlnB and homologs), in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen assimilation and metabolism. | 0.921 |
glnA | glnE | STM4007 | STM3201 | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | Adenylyl transferase for glutamine synthetase; Involved in the regulation of glutamine synthetase GlnA, a key enzyme in the process to assimilate ammonia. When cellular nitrogen levels are high, the C-terminal adenylyl transferase (AT) inactivates GlnA by covalent transfer of an adenylyl group from ATP to specific tyrosine residue of GlnA, thus reducing its activity. Conversely, when nitrogen levels are low, the N-terminal adenylyl removase (AR) activates GlnA by removing the adenylyl group by phosphorolysis, increasing its activity. The regulatory region of GlnE binds the signal trans [...] | 0.899 |
glnA | glnG | STM4007 | STM4005 | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | EBP family response regulator in two-component regulatory system with GlnL; Member of the two-component regulatory system NtrB/NtrC, which controls expression of the nitrogen-regulated (ntr) genes in response to nitrogen limitation. Phosphorylated NtrC binds directly to DNA and stimulates the formation of open promoter-sigma54-RNA polymerase complexes. | 0.962 |
glnA | glnK | STM4007 | STM0462 | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | Regulatory protein P-II 2; Nitrogen assimilation by glutamine synthetase; regulates GlnL (NRII) and GlnE (ATase); similar to E. coli nitrogen regulatory protein P-II 2 (AAC73553.1); Blastp hit to AAC73553.1 (112 aa), 97% identity in aa 1 - 112. | 0.878 |
glnA | glnL | STM4007 | STM4006 | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | Sensory histidine kinase/phosphatase NtrB; Member of the two-component regulatory system NtrB/NtrC, which controls expression of the nitrogen-regulated (ntr) genes in response to nitrogen limitation. Under conditions of nitrogen limitation, NtrB autophosphorylates and transfers the phosphoryl group to NtrC. In the presence of nitrogen, acts as a phosphatase that dephosphorylates and inactivates NtrC. | 0.976 |
glnA | rpoN | STM4007 | STM3320 | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | Sigma N factor of RNA polymerase; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is responsible for the expression of enzymes involved in arginine catabolism. The open complex (sigma-54 and core RNA polymerase) serves as the receptor for the receipt of the melting signal from the remotely bound activator protein GlnG(NtrC). | 0.827 |
glnB | amtB | STM2561 | STM0463 | Regulatory protein (P-II) for nitrogen assimilation by glutamine synthetase (ATase); P-II indirectly controls the transcription of the glutamine synthetase gene (GlnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme (By similarity). | Putative Amt family, ammonium transport protein; Similar to E. coli probable ammonium transporter (AAC73554.1); Blastp hit to AAC73554.1 (428 aa), 92% identity in aa 1 - 428. | 0.999 |
glnB | glnA | STM2561 | STM4007 | Regulatory protein (P-II) for nitrogen assimilation by glutamine synthetase (ATase); P-II indirectly controls the transcription of the glutamine synthetase gene (GlnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme (By similarity). | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | 0.870 |
glnB | glnD | STM2561 | STM0214 | Regulatory protein (P-II) for nitrogen assimilation by glutamine synthetase (ATase); P-II indirectly controls the transcription of the glutamine synthetase gene (GlnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme (By similarity). | Uridylyltransferase; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins (GlnB and homologs), in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen assimilation and metabolism. | 0.998 |