STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
prpBPutative carboxyphosphonoenolpyruvate mutase; Involved in the catabolism of short chain fatty acids (SCFA) via the 2-methylcitrate cycle I (propionate degradation route). Catalyzes the thermodynamically favored C-C bond cleavage of (2R,3S)-2- methylisocitrate to yield pyruvate and succinate via an alpha-carboxy- carbanion intermediate. Belongs to the isocitrate lyase/PEP mutase superfamily. Methylisocitrate lyase family. (295 aa)    
Predicted Functional Partners:
prpC
Putative citrate synthase; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and via the 2-methylcitrate cycle I (propionate degradation route). Catalyzes the Claisen condensation of propionyl-CoA and oxaloacetate (OAA) to yield 2-methylcitrate (2-MC) and CoA. Also catalyzes the condensation of oxaloacetate with acetyl-CoA or butyryl-CoA but with a lower specificity.
 
 0.997
prpD
Putative protein in propionate catabolism; Involved in the catabolism of short chain fatty acids (SCFA) via the 2-methylcitrate cycle I (propionate degradation route). Catalyzes the dehydration of 2-methylcitrate (2-MC) to yield the cis isomer of 2-methyl-aconitate. It is also able to catalyze the dehydration of citrate at a lower rate, and the hydration of cis- aconitate. It has no aconitase-like activity and is unable to catalyze the hydration of 2-methyl-cis-aconitate.
 
  
 0.993
prpE
Putative acetyl-CoA synthetase, propionate catabolism operon; Catalyzes the synthesis of propionyl-CoA from propionate and CoA. Also converts acetate to acetyl-CoA but with a lower specific activity.
  
  
 0.952
acnB
Aconitate hydratase 2; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and the 2- methylcitrate cycle I (propionate degradation route). Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. Also catalyzes the hydration of 2-methyl-cis-aconitate to yield (2R,3S)-2-methylisocitrate. The apo form of AcnB functions as a RNA- binding regulatory protein which regulates FliC synthesis via interaction with the ftsH transcript to decrease the intracellular levels of FtsH. The lower levels of Fts [...]
   
 
 0.948
lpp
Murein lipoprotein; Plays an important role in virulence. A highly abundant outer membrane lipoprotein that controls the distance between the inner and outer membranes. The only protein known to be covalently linked to the peptidoglycan network (PGN). Also non- covalently binds the PGN. The link between the cell outer membrane and PGN contributes to maintenance of the structural and functional integrity of the cell envelope, and maintains the correct distance between the PGN and the outer membrane (By similarity).
      
 0.942
aceB
Similar to E. coli malate synthase A (AAC76984.1); Blastp hit to AAC76984.1 (533 aa), 90% identity in aa 1 - 533.
   
 
 0.927
sucC
succinyl-CoA synthetase, beta subunit; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit.
   
 
 0.920
sucD
succinyl-CoA synthetase, alpha subunit; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit.
   
 0.917
acs
acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. Acs undergoes a two-step reaction. In the first half reaction, Acs combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA.
  
 
 0.893
cutC
Copper homeostasis protein; Participates in the control of copper homeostasis.
      
 0.891
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: medium (48%) [HD]