node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
apbA | thiJ | STM0434 | STM0433 | Ketopantoate reductase; Catalyzes the NADPH-dependent reduction of ketopantoate into pantoic acid. Has a strong preference for NADPH over NADH as the electron acceptor. Pantoate, ketoisovalerate, oxaloacetate, pyruvate, 3-hydroxypyruvate, alpha-ketoglutarate, alpha-ketobutyrate, and acetaldehyde cannot serve as substrates for reduction. | 4-methyl-5(beta-hydroxyethyl)-thiazole synthesis; Protein and nucleotide deglycase that catalyzes the deglycation of the Maillard adducts formed between amino groups of proteins or nucleotides and reactive carbonyl groups of glyoxals. Thus, functions as a protein deglycase that repairs methylglyoxal- and glyoxal-glycated proteins, and releases repaired proteins and lactate or glycolate, respectively. Deglycates cysteine, arginine and lysine residues in proteins, and thus reactivates these proteins by reversing glycation by glyoxals. Is able to repair glycated serum albumin, collagen, g [...] | 0.929 |
apbA | yajQ | STM0434 | STM0435 | Ketopantoate reductase; Catalyzes the NADPH-dependent reduction of ketopantoate into pantoic acid. Has a strong preference for NADPH over NADH as the electron acceptor. Pantoate, ketoisovalerate, oxaloacetate, pyruvate, 3-hydroxypyruvate, alpha-ketoglutarate, alpha-ketobutyrate, and acetaldehyde cannot serve as substrates for reduction. | Putative cytoplasmic protein; Similar to E. coli orf, hypothetical protein (AAC73529.1); Blastp hit to AAC73529.1 (169 aa), 90% identity in aa 1 - 169. | 0.585 |
dnaJ | nifJ | STM0013 | STM1651 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Similar to E. coli putative oxidoreductase, Fe-S subunit (AAC74460.1); Blastp hit to AAC74460.1 (1174 aa), 92% identity in aa 1 - 1174. | 0.863 |
dnaJ | rplM | STM0013 | STM3345 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 50S ribosomal subunit protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. | 0.567 |
dnaJ | thiJ | STM0013 | STM0433 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 4-methyl-5(beta-hydroxyethyl)-thiazole synthesis; Protein and nucleotide deglycase that catalyzes the deglycation of the Maillard adducts formed between amino groups of proteins or nucleotides and reactive carbonyl groups of glyoxals. Thus, functions as a protein deglycase that repairs methylglyoxal- and glyoxal-glycated proteins, and releases repaired proteins and lactate or glycolate, respectively. Deglycates cysteine, arginine and lysine residues in proteins, and thus reactivates these proteins by reversing glycation by glyoxals. Is able to repair glycated serum albumin, collagen, g [...] | 0.528 |
gloA | gloB | STM1435 | STM0261 | Glyoxalase I; Catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione. | Hydroxyacylglutathione hydrolase; Thiolesterase that catalyzes the hydrolysis of S-D-lactoyl- glutathione to form glutathione and D-lactic acid. | 0.998 |
gloA | nifJ | STM1435 | STM1651 | Glyoxalase I; Catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione. | Similar to E. coli putative oxidoreductase, Fe-S subunit (AAC74460.1); Blastp hit to AAC74460.1 (1174 aa), 92% identity in aa 1 - 1174. | 0.678 |
gloA | thiJ | STM1435 | STM0433 | Glyoxalase I; Catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione. | 4-methyl-5(beta-hydroxyethyl)-thiazole synthesis; Protein and nucleotide deglycase that catalyzes the deglycation of the Maillard adducts formed between amino groups of proteins or nucleotides and reactive carbonyl groups of glyoxals. Thus, functions as a protein deglycase that repairs methylglyoxal- and glyoxal-glycated proteins, and releases repaired proteins and lactate or glycolate, respectively. Deglycates cysteine, arginine and lysine residues in proteins, and thus reactivates these proteins by reversing glycation by glyoxals. Is able to repair glycated serum albumin, collagen, g [...] | 0.546 |
gloA | yhbO | STM1435 | STM3269 | Glyoxalase I; Catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione. | Putative intracellular proteinase; Similar to E. coli orf, hypothetical protein (AAC76187.1); Blastp hit to AAC76187.1 (186 aa), 94% identity in aa 15 - 186. | 0.449 |
gloB | gloA | STM0261 | STM1435 | Hydroxyacylglutathione hydrolase; Thiolesterase that catalyzes the hydrolysis of S-D-lactoyl- glutathione to form glutathione and D-lactic acid. | Glyoxalase I; Catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione. | 0.998 |
gloB | thiJ | STM0261 | STM0433 | Hydroxyacylglutathione hydrolase; Thiolesterase that catalyzes the hydrolysis of S-D-lactoyl- glutathione to form glutathione and D-lactic acid. | 4-methyl-5(beta-hydroxyethyl)-thiazole synthesis; Protein and nucleotide deglycase that catalyzes the deglycation of the Maillard adducts formed between amino groups of proteins or nucleotides and reactive carbonyl groups of glyoxals. Thus, functions as a protein deglycase that repairs methylglyoxal- and glyoxal-glycated proteins, and releases repaired proteins and lactate or glycolate, respectively. Deglycates cysteine, arginine and lysine residues in proteins, and thus reactivates these proteins by reversing glycation by glyoxals. Is able to repair glycated serum albumin, collagen, g [...] | 0.788 |
gloB | ydiH | STM0261 | STM1367 | Hydroxyacylglutathione hydrolase; Thiolesterase that catalyzes the hydrolysis of S-D-lactoyl- glutathione to form glutathione and D-lactic acid. | Putative cytoplasmic protein; Similar to E. coli orf, hypothetical protein (AAC74755.1); Blastp hit to AAC74755.1 (89 aa), 89% identity in aa 24 - 89. | 0.501 |
gloB | yhbO | STM0261 | STM3269 | Hydroxyacylglutathione hydrolase; Thiolesterase that catalyzes the hydrolysis of S-D-lactoyl- glutathione to form glutathione and D-lactic acid. | Putative intracellular proteinase; Similar to E. coli orf, hypothetical protein (AAC76187.1); Blastp hit to AAC76187.1 (186 aa), 94% identity in aa 15 - 186. | 0.470 |
nifJ | dnaJ | STM1651 | STM0013 | Similar to E. coli putative oxidoreductase, Fe-S subunit (AAC74460.1); Blastp hit to AAC74460.1 (1174 aa), 92% identity in aa 1 - 1174. | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.863 |
nifJ | gloA | STM1651 | STM1435 | Similar to E. coli putative oxidoreductase, Fe-S subunit (AAC74460.1); Blastp hit to AAC74460.1 (1174 aa), 92% identity in aa 1 - 1174. | Glyoxalase I; Catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione. | 0.678 |
nifJ | thiJ | STM1651 | STM0433 | Similar to E. coli putative oxidoreductase, Fe-S subunit (AAC74460.1); Blastp hit to AAC74460.1 (1174 aa), 92% identity in aa 1 - 1174. | 4-methyl-5(beta-hydroxyethyl)-thiazole synthesis; Protein and nucleotide deglycase that catalyzes the deglycation of the Maillard adducts formed between amino groups of proteins or nucleotides and reactive carbonyl groups of glyoxals. Thus, functions as a protein deglycase that repairs methylglyoxal- and glyoxal-glycated proteins, and releases repaired proteins and lactate or glycolate, respectively. Deglycates cysteine, arginine and lysine residues in proteins, and thus reactivates these proteins by reversing glycation by glyoxals. Is able to repair glycated serum albumin, collagen, g [...] | 0.533 |
nifJ | yhbO | STM1651 | STM3269 | Similar to E. coli putative oxidoreductase, Fe-S subunit (AAC74460.1); Blastp hit to AAC74460.1 (1174 aa), 92% identity in aa 1 - 1174. | Putative intracellular proteinase; Similar to E. coli orf, hypothetical protein (AAC76187.1); Blastp hit to AAC76187.1 (186 aa), 94% identity in aa 15 - 186. | 0.533 |
rplM | dnaJ | STM3345 | STM0013 | 50S ribosomal subunit protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.567 |
rplM | thiJ | STM3345 | STM0433 | 50S ribosomal subunit protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. | 4-methyl-5(beta-hydroxyethyl)-thiazole synthesis; Protein and nucleotide deglycase that catalyzes the deglycation of the Maillard adducts formed between amino groups of proteins or nucleotides and reactive carbonyl groups of glyoxals. Thus, functions as a protein deglycase that repairs methylglyoxal- and glyoxal-glycated proteins, and releases repaired proteins and lactate or glycolate, respectively. Deglycates cysteine, arginine and lysine residues in proteins, and thus reactivates these proteins by reversing glycation by glyoxals. Is able to repair glycated serum albumin, collagen, g [...] | 0.530 |
thiJ | apbA | STM0433 | STM0434 | 4-methyl-5(beta-hydroxyethyl)-thiazole synthesis; Protein and nucleotide deglycase that catalyzes the deglycation of the Maillard adducts formed between amino groups of proteins or nucleotides and reactive carbonyl groups of glyoxals. Thus, functions as a protein deglycase that repairs methylglyoxal- and glyoxal-glycated proteins, and releases repaired proteins and lactate or glycolate, respectively. Deglycates cysteine, arginine and lysine residues in proteins, and thus reactivates these proteins by reversing glycation by glyoxals. Is able to repair glycated serum albumin, collagen, g [...] | Ketopantoate reductase; Catalyzes the NADPH-dependent reduction of ketopantoate into pantoic acid. Has a strong preference for NADPH over NADH as the electron acceptor. Pantoate, ketoisovalerate, oxaloacetate, pyruvate, 3-hydroxypyruvate, alpha-ketoglutarate, alpha-ketobutyrate, and acetaldehyde cannot serve as substrates for reduction. | 0.929 |