node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
glyA | ilvA | STM2555 | STM3905 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (By similarity). | Threonine deaminase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). Belongs to the serine/threon [...] | 0.973 |
glyA | serB | STM2555 | STM4578 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (By similarity). | Similar to E. coli 3-phosphoserine phosphatase (AAC77341.1); Blastp hit to AAC77341.1 (322 aa), 93% identity in aa 1 - 322. | 0.965 |
glyA | tdcB | STM2555 | STM3244 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (By similarity). | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. TdcB also dehydrates serine to yield pyruv [...] | 0.943 |
glyA | trpA | STM2555 | STM1727 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (By similarity). | Tryptophan synthase, alpha protein; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. | 0.940 |
glyA | trpB | STM2555 | STM1726 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (By similarity). | Tryptophan synthase, beta protein; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine; Belongs to the TrpB family. | 0.932 |
glyA | trpC | STM2555 | STM1725 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (By similarity). | N-(5-phosphoribosyl)anthranilate isomerase; Bifunctional enzyme that catalyzes two sequential steps of tryptophan biosynthetic pathway. The first reaction is catalyzed by the isomerase, coded by the TrpF domain; the second reaction is catalyzed by the synthase, coded by the TrpC domain (By similarity). | 0.406 |
glyA | trpD | STM2555 | STM1724 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (By similarity). | Anthranilate synthase, component II; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concen [...] | 0.515 |
ilvA | glyA | STM3905 | STM2555 | Threonine deaminase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). Belongs to the serine/threon [...] | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (By similarity). | 0.973 |
ilvA | serB | STM3905 | STM4578 | Threonine deaminase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). Belongs to the serine/threon [...] | Similar to E. coli 3-phosphoserine phosphatase (AAC77341.1); Blastp hit to AAC77341.1 (322 aa), 93% identity in aa 1 - 322. | 0.905 |
ilvA | tdcB | STM3905 | STM3244 | Threonine deaminase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). Belongs to the serine/threon [...] | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. TdcB also dehydrates serine to yield pyruv [...] | 0.925 |
ilvA | trpA | STM3905 | STM1727 | Threonine deaminase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). Belongs to the serine/threon [...] | Tryptophan synthase, alpha protein; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. | 0.921 |
ilvA | trpB | STM3905 | STM1726 | Threonine deaminase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). Belongs to the serine/threon [...] | Tryptophan synthase, beta protein; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine; Belongs to the TrpB family. | 0.947 |
ilvA | trpC | STM3905 | STM1725 | Threonine deaminase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). Belongs to the serine/threon [...] | N-(5-phosphoribosyl)anthranilate isomerase; Bifunctional enzyme that catalyzes two sequential steps of tryptophan biosynthetic pathway. The first reaction is catalyzed by the isomerase, coded by the TrpF domain; the second reaction is catalyzed by the synthase, coded by the TrpC domain (By similarity). | 0.646 |
ilvA | trpD | STM3905 | STM1724 | Threonine deaminase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). Belongs to the serine/threon [...] | Anthranilate synthase, component II; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concen [...] | 0.778 |
pabA | pabB | STM3469 | STM1824 | P-aminobenzoate synthetase component II; Part of a heterodimeric complex that catalyzes the two-step biosynthesis of 4-amino-4-deoxychorismate (ADC), a precursor of p- aminobenzoate (PABA) and tetrahydrofolate. In the first step, a glutamine amidotransferase (PabA) generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by aminodeoxychorismate synthase (PabB) to produce ADC. PabA converts glutamine into glutamate only in the presence of stoichiometric amounts of PabB (By similarity). | P-aminobenzoate synthetase, component I; Part of a heterodimeric complex that catalyzes the two-step biosynthesis of 4-amino-4-deoxychorismate (ADC), a precursor of p- aminobenzoate (PABA) and tetrahydrofolate. In the first step, a glutamine amidotransferase (PabA) generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by aminodeoxychorismate synthase (PabB) to produce ADC (By similarity). | 0.999 |
pabA | trpA | STM3469 | STM1727 | P-aminobenzoate synthetase component II; Part of a heterodimeric complex that catalyzes the two-step biosynthesis of 4-amino-4-deoxychorismate (ADC), a precursor of p- aminobenzoate (PABA) and tetrahydrofolate. In the first step, a glutamine amidotransferase (PabA) generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by aminodeoxychorismate synthase (PabB) to produce ADC. PabA converts glutamine into glutamate only in the presence of stoichiometric amounts of PabB (By similarity). | Tryptophan synthase, alpha protein; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. | 0.969 |
pabA | trpB | STM3469 | STM1726 | P-aminobenzoate synthetase component II; Part of a heterodimeric complex that catalyzes the two-step biosynthesis of 4-amino-4-deoxychorismate (ADC), a precursor of p- aminobenzoate (PABA) and tetrahydrofolate. In the first step, a glutamine amidotransferase (PabA) generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by aminodeoxychorismate synthase (PabB) to produce ADC. PabA converts glutamine into glutamate only in the presence of stoichiometric amounts of PabB (By similarity). | Tryptophan synthase, beta protein; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine; Belongs to the TrpB family. | 0.955 |
pabA | trpC | STM3469 | STM1725 | P-aminobenzoate synthetase component II; Part of a heterodimeric complex that catalyzes the two-step biosynthesis of 4-amino-4-deoxychorismate (ADC), a precursor of p- aminobenzoate (PABA) and tetrahydrofolate. In the first step, a glutamine amidotransferase (PabA) generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by aminodeoxychorismate synthase (PabB) to produce ADC. PabA converts glutamine into glutamate only in the presence of stoichiometric amounts of PabB (By similarity). | N-(5-phosphoribosyl)anthranilate isomerase; Bifunctional enzyme that catalyzes two sequential steps of tryptophan biosynthetic pathway. The first reaction is catalyzed by the isomerase, coded by the TrpF domain; the second reaction is catalyzed by the synthase, coded by the TrpC domain (By similarity). | 0.999 |
pabA | trpD | STM3469 | STM1724 | P-aminobenzoate synthetase component II; Part of a heterodimeric complex that catalyzes the two-step biosynthesis of 4-amino-4-deoxychorismate (ADC), a precursor of p- aminobenzoate (PABA) and tetrahydrofolate. In the first step, a glutamine amidotransferase (PabA) generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by aminodeoxychorismate synthase (PabB) to produce ADC. PabA converts glutamine into glutamate only in the presence of stoichiometric amounts of PabB (By similarity). | Anthranilate synthase, component II; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concen [...] | 0.941 |
pabA | trpE | STM3469 | STM1723 | P-aminobenzoate synthetase component II; Part of a heterodimeric complex that catalyzes the two-step biosynthesis of 4-amino-4-deoxychorismate (ADC), a precursor of p- aminobenzoate (PABA) and tetrahydrofolate. In the first step, a glutamine amidotransferase (PabA) generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by aminodeoxychorismate synthase (PabB) to produce ADC. PabA converts glutamine into glutamate only in the presence of stoichiometric amounts of PabB (By similarity). | Anthranilate synthase, component I; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concent [...] | 0.999 |