STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
udgUDP-glucose 6-dehydrogenase. (SW:UDG_SALTY). (388 aa)    
Predicted Functional Partners:
yfbG
Putative transformylase; Bifunctional enzyme that catalyzes the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcUA) to UDP-4-keto- arabinose (UDP-Ara4O) and the addition of a formyl group to UDP-4- amino-4-deoxy-L-arabinose (UDP-L-Ara4N) to form UDP-L-4-formamido- arabinose (UDP-L-Ara4FN). The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides (By similarity); In the N-terminal section; belongs to the Fmt family. UDP- L-Ara4N formyltransferase subfamily.
 0.991
galF
Putative glucose-1-phosphate uridylyltransferase, non-catalytic subunit; May play a role in stationary phase survival; Belongs to the UDPGP type 2 family.
  
 0.957
galU
Similar to E. coli glucose-1-phosphate uridylyltransferase (AAC74318.1); Blastp hit to AAC74318.1 (302 aa), 97% identity in aa 1 - 302.
  
 0.956
rfbC
dTDP-4,deoxyrhamnose 3,5 epimerase; Catalyzes the epimerization of the C3' and C5'positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. Belongs to the dTDP-4-dehydrorhamnose 3,5-epimerase family.
  
  
 0.943
galE
UDP-galactose 4-epimerase; Involved in the metabolism of galactose. Catalyzes the conversion of UDP-galactose (UDP-Gal) to UDP-glucose (UDP-Glc) through a mechanism involving the transient reduction of NAD (By similarity).
  
 
 0.938
pmrF
Putative glycosyl transferase; Catalyzes the transfer of 4-deoxy-4-formamido-L-arabinose from UDP to undecaprenyl phosphate. The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides. Plays an important role in pathogenesis by providing resistance to antimicrobial peptides within macrophages or at other anatomic sites encountered during infection. Belongs to the glycosyltransferase 2 family.
  
  
 0.925
STM0719
Similar to E. coli UDP-galactopyranose mutase (AAC75097.1); Blastp hit to AAC75097.1 (367 aa), 39% identity in aa 5 - 366.
  
  
 0.913
basR
Response regulator in two-component regulatory system with BasS; Member of the two-component regulatory system BasS/BasR. BasR induces the transcription of the ugd, ais, arnBCADTEF and eptA-basRS loci, all involved in resistance to polymyxin. Represses the transcription of pmrD. Plays a role in the adaptation of the organism to the host environment, in particular to neutrophils, and therefore it plays a role in virulence as well.
      
 0.899
yjdB
Putative integral membrane protein; Catalyzes the addition of a phosphoethanolamine moiety to the lipid A. The phosphoethanolamine modification is required for resistance to polymyxin; Belongs to the phosphoethanolamine transferase family. EptA subfamily.
   
  
 0.897
basS
Sensory kinase in two-component regulatory system with BasR; Member of the two-component regulatory system BasS/BasR. Autophosphorylates and activates BasR by phosphorylation. Plays a role in the adaptation of the organism to the host environment, in particular to neutrophils, and therefore it plays a role in virulence as well.
      
 0.893
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: low (28%) [HD]