STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rfbCdTDP-4,deoxyrhamnose 3,5 epimerase; Catalyzes the epimerization of the C3' and C5'positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. Belongs to the dTDP-4-dehydrorhamnose 3,5-epimerase family. (183 aa)    
Predicted Functional Partners:
rfbF
Glucose-1-phosphate cytidylyltransferase; Involved in the biosynthesis of the tyvelose, a 3,6- dideoxyhexose found in the O-antigen of the surface lipopolysaccharides. It catalyzes the transfer of a CMP moiety from CTP to glucose 1-phosphate (By similarity).
 
  
 0.999
rfbA
dTDP-glucose pyrophosphorylase; Catalyzes the formation of dTDP-glucose, from dTTP and glucose 1-phosphate, as well as its pyrophosphorolysis. Is also able to convert non natural substrates such as a wide array of alpha-D- hexopyranosyl, deoxy-alpha-D-glucopyranosyl, aminodeoxy-alpha-D- hexopyranosyl and acetamidodeoxy-alpha-D-hexopyranosyl phosphates to their corresponding dTDP- and UDP-nucleotide sugars.
  
 0.999
rfbD
TDP-rhamnose synthetase; Involved in the biosynthesis of the dTDP-L-rhamnose which is an important component of lipopolysaccharide (LPS). Catalyzes the reduction of dTDP-6-deoxy-L-lyxo-4-hexulose to yield dTDP-L-rhamnose. RmlD uses NADH and NADPH nearly equally well.
 
 0.999
rfbB
dTDP-glucose 4,6 dehydratase; Catalyzes the dehydration of dTDP-D-glucose to form dTDP-6- deoxy-D-xylo-4-hexulose via a three-step process involving oxidation, dehydration and reduction; Belongs to the NAD(P)-dependent epimerase/dehydratase family. dTDP-glucose dehydratase subfamily.
 
 0.999
rffG
Similar to E. coli dTDP-glucose 4,6-dehydratase (AAC76793.1); Blastp hit to AAC76793.1 (355 aa), 88% identity in aa 1 - 354; Belongs to the NAD(P)-dependent epimerase/dehydratase family. dTDP-glucose dehydratase subfamily.
 
 0.998
rfbG
LPS side chain defect; CDP-glucose 4,6-dehydratase. (SW:RFBG_SALTY); Belongs to the NAD(P)-dependent epimerase/dehydratase family.
 
  
 0.994
rfbI-2
CDP-6-deoxy-delta3,4-glucoseen reductase; LPS side chain defect; RFBI protein. (SW:RFBI_SALTY).
  
    0.981
rfbM
Mannose-1-phosphate guanylyltransferase; Involved in GDP-mannose biosynthesis which serves as the activated sugar nucleotide precursor for mannose residues in cell surface polysaccharides. This enzyme participates in synthesis of the LPS group B O antigen; Belongs to the mannose-6-phosphate isomerase type 2 family.
  
  
 0.975
rfbH
CDP-6deoxy-D-xylo-4-hexulose-3-dehydrase; LPS side chain defect; lipopolysaccharide biosynthesis protein RFBH. (SW:RFBH_SALTY); Belongs to the DegT/DnrJ/EryC1 family.
  
  
 0.970
udg
UDP-glucose 6-dehydrogenase. (SW:UDG_SALTY).
  
  
 0.943
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: high (82%) [HD]