node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
folD | guaA | STM0542 | STM2510 | 5,10-methylene-tetrahydrofolate dehydrogenase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | GMP synthetase; Catalyzes the synthesis of GMP from XMP. | 0.573 |
folD | guaB | STM0542 | STM2511 | 5,10-methylene-tetrahydrofolate dehydrogenase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. | 0.560 |
folD | xseA | STM0542 | STM2512 | 5,10-methylene-tetrahydrofolate dehydrogenase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Exonuclease VII, large subunit; Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseA family. | 0.928 |
guaA | folD | STM2510 | STM0542 | GMP synthetase; Catalyzes the synthesis of GMP from XMP. | 5,10-methylene-tetrahydrofolate dehydrogenase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.573 |
guaA | guaB | STM2510 | STM2511 | GMP synthetase; Catalyzes the synthesis of GMP from XMP. | IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. | 0.999 |
guaA | ispA | STM2510 | STM0423 | GMP synthetase; Catalyzes the synthesis of GMP from XMP. | Similar to E. coli geranyltranstransferase (farnesyldiphosphate synthase) (AAC73524.1); Blastp hit to AAC73524.1 (299 aa), 90% identity in aa 1 - 299; Belongs to the FPP/GGPP synthase family. | 0.403 |
guaA | xseA | STM2510 | STM2512 | GMP synthetase; Catalyzes the synthesis of GMP from XMP. | Exonuclease VII, large subunit; Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseA family. | 0.626 |
guaB | folD | STM2511 | STM0542 | IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. | 5,10-methylene-tetrahydrofolate dehydrogenase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.560 |
guaB | guaA | STM2511 | STM2510 | IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. | GMP synthetase; Catalyzes the synthesis of GMP from XMP. | 0.999 |
guaB | recG | STM2511 | STM3744 | IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. | DNA helicase; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3'- to 5'- polarity. Unwinds branched duplex DNA (Y- DNA); Belongs to the helicase family. RecG subfamily. | 0.484 |
guaB | xseA | STM2511 | STM2512 | IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. | Exonuclease VII, large subunit; Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseA family. | 0.683 |
ispA | guaA | STM0423 | STM2510 | Similar to E. coli geranyltranstransferase (farnesyldiphosphate synthase) (AAC73524.1); Blastp hit to AAC73524.1 (299 aa), 90% identity in aa 1 - 299; Belongs to the FPP/GGPP synthase family. | GMP synthetase; Catalyzes the synthesis of GMP from XMP. | 0.403 |
ispA | xseA | STM0423 | STM2512 | Similar to E. coli geranyltranstransferase (farnesyldiphosphate synthase) (AAC73524.1); Blastp hit to AAC73524.1 (299 aa), 90% identity in aa 1 - 299; Belongs to the FPP/GGPP synthase family. | Exonuclease VII, large subunit; Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseA family. | 0.629 |
ispA | xseB | STM0423 | STM0424 | Similar to E. coli geranyltranstransferase (farnesyldiphosphate synthase) (AAC73524.1); Blastp hit to AAC73524.1 (299 aa), 90% identity in aa 1 - 299; Belongs to the FPP/GGPP synthase family. | Exonuclease VII, small subunit; Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseB family. | 0.950 |
mfd | recG | STM1216 | STM3744 | Transcription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. | DNA helicase; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3'- to 5'- polarity. Unwinds branched duplex DNA (Y- DNA); Belongs to the helicase family. RecG subfamily. | 0.633 |
mfd | recJ | STM1216 | STM3042 | Transcription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. | ssDNA exonuclease; Single-stranded-DNA-specific exonuclease. Required for many types of recombinational events, although the stringency of the requirement for RecJ appears to vary with the type of recombinational event monitored and the other recombination gene products which are available. | 0.693 |
mfd | recN | STM1216 | STM2684 | Transcription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. | Protein used in recombination and DNA repair; May be involved in recombinational repair of damaged DNA. | 0.698 |
mfd | xseA | STM1216 | STM2512 | Transcription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. | Exonuclease VII, large subunit; Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseA family. | 0.635 |
mfd | xseB | STM1216 | STM0424 | Transcription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. | Exonuclease VII, small subunit; Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseB family. | 0.402 |
recG | guaB | STM3744 | STM2511 | DNA helicase; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3'- to 5'- polarity. Unwinds branched duplex DNA (Y- DNA); Belongs to the helicase family. RecG subfamily. | IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. | 0.484 |