STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
oraARegulator; Modulates RecA activity; Belongs to the RecX family. (166 aa)    
Predicted Functional Partners:
recA
DNA strand exchange and recombination protein; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage.
  
 
 0.994
radA
Putative ATP-dependent protease; DNA-dependent ATPase involved in processing of recombination intermediates, plays a role in repairing DNA breaks. Stimulates the branch migration of RecA-mediated strand transfer reactions, allowing the 3' invading strand to extend heteroduplex DNA faster. Binds ssDNA in the presence of ADP but not other nucleotides, has ATPase activity that is stimulated by ssDNA and various branched DNA structures, but inhibited by SSB. Does not have RecA's homology-searching function. Belongs to the RecA family. RadA subfamily.
 
  
 0.888
lexA
SOS response regulator; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. Binds to the 16 bp palindromic sequence 5'-CTGTATATATATACAG-3'. In the presence of single- stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair.
   
  
 0.855
umuD
Error-prone repair: SOS-response transcriptional repressor; Involved in UV protection and mutation. Essential for induced (or SOS) mutagenesis. May modify the DNA replication machinery to allow bypass synthesis across a damaged template.
   
  
 0.854
recO
Gap repair gene; Involved in DNA repair and RecF pathway recombination; Belongs to the RecO family.
 
  
 0.854
recN
Protein used in recombination and DNA repair; May be involved in recombinational repair of damaged DNA.
  
  
 0.847
dinI
DNA damage-inducible protein I; Inhibits UmuD processing; similar to E. coli damage-inducible protein I (AAC74145.1); Blastp hit to AAC74145.1 (81 aa), 85% identity in aa 1 - 81.
   
  
 0.840
recR
Putative recombination protein, gap repair; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO.
     
 0.797
uvrD
DNA-dependent ATPase I and helicase II; Has both ATPase and helicase activities. Unwinds DNA duplexes with 3' to 5' polarity with respect to the bound strand and initiates unwinding most effectively when a single-stranded region is present. Involved in the post-incision events of nucleotide excision repair and methyl-directed mismatch repair; Belongs to the helicase family. UvrD subfamily.
 
  
 0.788
dinP
DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII.
      
 0.785
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: low (16%) [HD]