STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
G1SY51_RABITUncharacterized protein. (56 aa)    
Predicted Functional Partners:
MTOR
Serine/threonine-protein kinase mTOR; Belongs to the PI3/PI4-kinase family.
   
 
 0.664
SMG1
SMG1 nonsense mediated mRNA decay associated PI3K related kinase; Belongs to the PI3/PI4-kinase family.
    
 
 0.660
RYR2
Ryanodine receptor 2; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering cardiac muscle contraction. Aberrant channel activation can lead to cardiac arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) levels due to activation of the L-type calcium channel CACNA1C. Required for cellular calcium ion homeostasis. Required for embryonic heart development (By similarity). The calcium channel activity is modulated by formation of heterotetramers with RYR3; Belongs to t [...]
    
 0.659
RYR1
Ryanodine receptor 1; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules. Repeated very high- level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm (By similarity). Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. [...]
    
 0.659
RYR3
Ryanodine receptor 3; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm in muscle and thereby plays a role in triggering muscle contraction. May regulate Ca(2+) release by other calcium channels. Calcium channel that mediates Ca(2+)-induced Ca(2+) release from the endoplasmic reticulum in non-muscle cells. Plays a role in cellular calcium signaling. Contributes to cellular calcium ion homeostasis. Isoform 2 lacks a predicted transmembrane segment and does not form functional calcium channels by itself; however, it can form tetramers [...]
    
 0.659
PPP3CB
Serine/threonine-protein phosphatase.
    
 0.643
PPP3CC
Serine/threonine-protein phosphatase.
    
 0.643
PPP3CA
Serine/threonine-protein phosphatase.
    
 0.643
RPS15
Ribosomal protein S15; Belongs to the universal ribosomal protein uS19 family.
   
   0.624
RPL18A
60S ribosomal protein L18a; Belongs to the eukaryotic ribosomal protein eL20 family.
   
 
 0.558
Your Current Organism:
Oryctolagus cuniculus
NCBI taxonomy Id: 9986
Other names: European rabbit, Japanese white rabbit, Lepus cuniculus, New Zealand rabbit, O. cuniculus, domestic rabbit, rabbit, rabbits
Server load: low (26%) [HD]