STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AOX1Aldehyde oxidase; Oxidase with broad substrate specificity, oxidizing aromatic azaheterocycles, such as N1-methylnicotinamide, N-methylphthalazinium and phthalazine, as well as aldehydes, such as benzaldehyde, retinal, pyridoxal, and vanillin. Plays a key role in the metabolism of xenobiotics and drugs containing aromatic azaheterocyclic substituents. Participates in the bioactivation of prodrugs such as famciclovir, catalyzing the oxidation step from 6-deoxypenciclovir to penciclovir, which is a potent antiviral agent. Is probably involved in the regulation of reactive oxygen species [...] (1338 aa)    
Predicted Functional Partners:
MOCOS
Molybdenum cofactor sulfurase; Sulfurates the molybdenum cofactor. Sulfation of molybdenum is essential for xanthine dehydrogenase (XDH) and aldehyde oxidase (ADO) enzymes in which molybdenum cofactor is liganded by 1 oxygen and 1 sulfur atom in active form. In vitro, the C-terminal domain is able to reduce N-hydroxylated prodrugs, such as benzamidoxime. Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. MOCOS subfamily.
  
 
 0.978
MAOB
Amine oxidase [flavin-containing] B; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine; Belongs to the flavin monoamine oxidase family.
   
 
 0.969
SUOX
Sulfite oxidase, mitochondrial; Sulfite oxidase.
      
 0.966
CYP2C9
Cytochrome P450 2C9; A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and steroids. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulato [...]
   
 
 0.964
CYP2B6
Cytochrome P450 2B6; A cytochrome P450 monooxygenase involved in the metabolism of endocannabinoids and steroids. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH-- hemoprotein reductase). Catalyzes the epoxidation of double bonds of arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15- epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling. Hydroxylates steroid hormon [...]
   
 
 0.963
MOCS1
Cyclic pyranopterin monophosphate synthase; Isoform MOCS1A and isoform MOCS1B probably form a complex that catalyzes the conversion of 5'-GTP to cyclic pyranopterin monophosphate (cPMP). MOCS1A catalyzes the cyclization of GTP to (8S)- 3',8-cyclo-7,8-dihydroguanosine 5'-triphosphate and MOCS1B catalyzes the subsequent conversion of (8S)-3',8-cyclo-7,8-dihydroguanosine 5'- triphosphate to cPMP; In the C-terminal section; belongs to the MoaC family.
   
  
 0.962
NNMT
Nicotinamide N-methyltransferase; Catalyzes the N-methylation of nicotinamide and other pyridines to form pyridinium ions. This activity is important for biotransformation of many drugs and xenobiotic compounds.
   
 
 0.957
CYP2A6
Cytochrome P450 2A6; Exhibits a high coumarin 7-hydroxylase activity. Can act in the hydroxylation of the anti-cancer drugs cyclophosphamide and ifosphamide. Competent in the metabolic activation of aflatoxin B1. Constitutes the major nicotine C-oxidase. Acts as a 1,4-cineole 2-exo- monooxygenase. Possesses low phenacetin O-deethylation activity.
   
 
 0.956
CYP3A4
Cytochrome P450 3A4; A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds. Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta- estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxyla [...]
   
 
 0.956
ADH1B
All-trans-retinol dehydrogenase [NAD(+)] ADH1B; Catalyzes the NAD-dependent oxidation of all-trans-retinol and its derivatives such as all-trans-4-hydroxyretinol and may participate to retinoid metabolism. In vitro can also catalyzes the NADH-dependent reduction of all-trans- retinal and its derivatives such as all-trans-4-oxoretinal. Catalyzes in the oxidative direction with higher efficiency. Has the same affinity for all-trans-4-hydroxyretinol and all-trans-4-oxoretinal.
   
 
 0.952
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (28%) [HD]