STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
UAP1UDP-N-acetylgalactosamine pyrophosphorylase; Converts UTP and GlcNAc-1-P into UDP-GlcNAc, and UTP and GalNAc-1-P into UDP-GalNAc. Isoform AGX1 has 2 to 3 times higher activity towards GalNAc-1-P, while isoform AGX2 has 8 times more activity towards GlcNAc-1-P. (522 aa)    
Predicted Functional Partners:
PGM3
Phosphoacetylglucosamine mutase; Catalyzes the conversion of GlcNAc-6-P into GlcNAc-1-P during the synthesis of uridine diphosphate/UDP-GlcNAc, a sugar nucleotide critical to multiple glycosylation pathways including protein N- and O- glycosylation.
  
 0.997
GNE
Bifunctional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase; Regulates and initiates biosynthesis of N-acetylneuraminic acid (NeuAc), a precursor of sialic acids. Plays an essential role in early development (By similarity). Required for normal sialylation in hematopoietic cells. Sialylation is implicated in cell adhesion, signal transduction, tumorigenicity and metastatic behavior of malignant cells; In the C-terminal section; belongs to the ROK (NagC/XylR) family.
   
 
 0.967
UAP1L1
UDP-N-acetylhexosamine pyrophosphorylase-like protein 1; UDP-N-acetylglucosamine pyrophosphorylase 1 like 1.
  
  
0.957
GALE
UDP-glucose 4-epimerase; Catalyzes two distinct but analogous reactions: the reversible epimerization of UDP-glucose to UDP-galactose and the reversible epimerization of UDP-N-acetylglucosamine to UDP-N- acetylgalactosamine. The reaction with UDP-Gal plays a critical role in the Leloir pathway of galactose catabolism in which galactose is converted to the glycolytic intermediate glucose 6-phosphate. It contributes to the catabolism of dietary galactose and enables the endogenous biosynthesis of both UDP-Gal and UDP-GalNAc when exogenous sources are limited. Both UDP-sugar interconversi [...]
  
 
 0.886
GNPNAT1
Glucosamine-phosphate N-acetyltransferase 1; Belongs to the acetyltransferase family. GNA1 subfamily.
   
 
 0.875
GFPT1
Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1; Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins. Regulates the circadian expression of clock genes ARNTL/BMAL1 and CRY1.
   
 
 0.835
GFPT2
Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 2; Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins.
   
 
 0.781
GALK2
N-acetylgalactosamine kinase; Acts on GalNAc. Also acts as a galactokinase when galactose is present at high concentrations. May be involved in a salvage pathway for the reutilization of free GalNAc derived from the degradation of complex carbohydrates; Belongs to the GHMP kinase family. GalK subfamily.
  
 
 0.779
PGM1
Phosphoglucomutase-1; This enzyme participates in both the breakdown and synthesis of glucose; Belongs to the phosphohexose mutase family.
   
 0.735
UGDH
UDP-glucose 6-dehydrogenase; Catalyzes the formation of UDP-alpha-D-glucuronate, a constituent of complex glycosaminoglycans. Required for the biosynthesis of chondroitin sulfate and heparan sulfate. Required for embryonic development via its role in the biosynthesis of glycosaminoglycans (By similarity). Belongs to the UDP-glucose/GDP-mannose dehydrogenase family.
   
 
 0.733
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (18%) [HD]