STRINGSTRING
adhE adhE pfkA pfkA epd epd fbaB fbaB prpE prpE poxB poxB tpiA tpiA cysG cysG glk glk prpC prpC prpD prpD prpB prpB manZ manZ nirD nirD nirB nirB mtlR mtlR ptsI ptsI betI betI manY manY fbaA fbaA zwf zwf eno eno betA betA fruK fruK cydA cydA pphB pphB betT betT nirC nirC mtlA mtlA fruB fruB yeaD yeaD ptsH ptsH pykF pykF betB betB acnA acnA cydB cydB manX manX gapA gapA crr crr fruA fruA pgk pgk mtlD mtlD
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
adhEAcetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. (891 aa)
pfkA6-phosphofructokinase I; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis; Belongs to the phosphofructokinase type A (PFKA) family. ATP-dependent PFK group I subfamily. Prokaryotic clade 'B1' sub- subfamily. (320 aa)
epdD-erythrose 4-phosphate dehydrogenase; Catalyzes the NAD-dependent conversion of D-erythrose 4- phosphate to 4-phosphoerythronate. (339 aa)
fbaBFructose-bisphosphate aldolase class I; Protein involved in glycolysis; Belongs to the DeoC/FbaB aldolase family. FbaB subfamily. (350 aa)
prpEpropionate--CoA ligase; Catalyzes the synthesis of propionyl-CoA from propionate and CoA. Also converts acetate to acetyl-CoA but with a lower specific activity (By similarity). (628 aa)
poxBPyruvate dehydrogenase, thiamine triphosphate-binding, FAD-binding; Pyruvate oxidase; Protein involved in carbohydrate catabolic process and pyruvate catabolic process; Belongs to the TPP enzyme family. (572 aa)
tpiATriosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (255 aa)
cysGUroporphyrinogen-III C-methyltransferase; Multifunctional enzyme that catalyzes the SAM-dependent methylations of uroporphyrinogen III at position C-2 and C-7 to form precorrin-2 via precorrin-1. Then it catalyzes the NAD-dependent ring dehydrogenation of precorrin-2 to yield sirohydrochlorin. Finally, it catalyzes the ferrochelation of sirohydrochlorin to yield siroheme. In the N-terminal section; belongs to the precorrin-2 dehydrogenase / sirohydrochlorin ferrochelatase family. (457 aa)
glkGlucokinase; Not highly important in E.coli as glucose is transported into the cell by the PTS system already as glucose 6-phosphate. (321 aa)
prpC2-methylcitrate synthase; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and via the 2-methylcitrate cycle I (propionate degradation route). Catalyzes the Claisen condensation of propionyl-CoA and oxaloacetate (OAA) to yield 2-methylcitrate (2-MC) and CoA. Also catalyzes the condensation of oxaloacetate with acetyl-CoA to yield citrate but with a lower specificity. (389 aa)
prpD2-methylcitrate dehydratase; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and via the 2-methylcitrate cycle I (propionate degradation route). Catalyzes the dehydration of 2-methylcitrate (2-MC) to yield the cis isomer of 2- methyl-aconitate. It is also able to catalyze the dehydration of citrate and the hydration of cis-aconitate at a lower rate. Due to its broad substrate specificity, it seems to be responsible for the residual aconitase activity of the acnAB-null mutant. Belongs to the PrpD family. (483 aa)
prpB2-methylisocitrate lyase; Involved in the catabolism of short chain fatty acids (SCFA) via the 2-methylcitrate cycle I (propionate degradation route). Catalyzes the thermodynamically favored C-C bond cleavage of (2R,3S)-2- methylisocitrate to yield pyruvate and succinate via an alpha-carboxy- carbanion intermediate; Belongs to the isocitrate lyase/PEP mutase superfamily. Methylisocitrate lyase family. (296 aa)
manZMannose-specific enzyme IID component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II ManXYZ PTS system is involved in mannose transport. Also functions as a receptor for bacterial chemotaxis and is required for infection of the cell by bacteriophage lambda where it most likely functions as a pore for penetration of lambda DNA. (283 aa)
nirDNitrite reductase (NADH) small subunit; Required for activity of the reductase. To B.subtilis NasE. (108 aa)
nirBNitrite reductase, large subunit, NAD(P)H-binding; Nitrite reductase (NAD(P)H) subunit; Protein involved in anaerobic respiration; Belongs to the nitrite and sulfite reductase 4Fe-4S domain family. (847 aa)
mtlRMannitol operon repressor; Involved in the repression of the expression of the mannitol mtlADR operon. Does not bind the operator/promoter regulatory region of this operon. Therefore, seems to belong to a new class of transcription factors in bacteria that may regulate gene expression indirectly, perhaps as a part of a larger transcriptional complex. (195 aa)
ptsIPEP-protein phosphotransferase of PTS system (enzyme I); General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr). Can also use (Z)-3-fluoro-PEP (ZFPEP), (Z)-3-methyl- PEP (ZMePEP), (Z)-3-chloro-PEP (ZClPEP) and (E)-3-chloro-PEP (EClPEP) as alte [...] (575 aa)
betICholine-inducible betIBA-betT divergent operon transcriptional repressor; Repressor involved in the biosynthesis of the osmoprotectant glycine betaine. It represses transcription of the choline transporter BetT and the genes of BetAB involved in the synthesis of glycine betaine. (195 aa)
manYMannose-specific enzyme IIC component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II ManXYZ PTS system is involved in mannose transport. Also functions as a receptor for bacterial chemotaxis and is required for infection of the cell by bacteriophage lambda where it most likely functions as a pore for penetration of lambda DNA. (266 aa)
fbaAFructose-bisphosphate aldolase, class II; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis. (359 aa)
zwfGlucose-6-phosphate 1-dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone; Belongs to the glucose-6-phosphate dehydrogenase family. (491 aa)
enoEnolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. It is also a component of the RNA degradosome, a multi-enzyme complex involved in RNA processing and messenger RNA degradation. Its interaction with RNase E is important for the turnover of mRNA, in particular on transcripts encoding enzymes of energy-generating metabolic routes. Its presence in the degradosome is required for the response to excess phosphosugar. May play a regulatory role in the degradation of specific RNAs, [...] (432 aa)
betACholine dehydrogenase, a flavoprotein; Involved in the biosynthesis of the osmoprotectant glycine betaine. Catalyzes the oxidation of choline to betaine aldehyde and betaine aldehyde to glycine betaine at the same rate. Belongs to the GMC oxidoreductase family. (556 aa)
fruKFructose-1-phosphate kinase; Protein involved in glycolysis; Belongs to the carbohydrate kinase PfkB family. (312 aa)
cydACytochrome d terminal oxidase, subunit I; A terminal oxidase that produces a proton motive force by the vectorial transfer of protons across the inner membrane. It is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at low aeration. Generates a proton motive force using protons and electrons from opposite sides of the membrane to generate H(2)O, transferring 1 proton/electron. Belongs to the cytochrome ubiquinol oxidase subunit 1 family. (522 aa)
pphBSerine/threonine-specific protein phosphatase 2; Has been shown, in vitro, to act on Ser, Thr and Tyr- phosphorylated substrates; Belongs to the PPP phosphatase family. (218 aa)
betTCholine transporter of high affinity; High-affinity uptake of choline driven by a proton-motive force; Belongs to the BCCT transporter (TC 2.A.15) family. (677 aa)
nirCNitrite transporter; Catalyzes nitrite uptake and nitrite export across the cytoplasmic membrane. Is up to 10-fold more active than NarK or NarU in nitrite uptake for subsequent reduction in the cytoplasm by the NirB/NirD nitrite reductase; Belongs to the FNT transporter (TC 2.A.44) family. (268 aa)
mtlAMannitol-specific PTS enzyme: IIA, IIB and IIC components; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in D-mannitol transport. Also able to use D-mannonic acid. (637 aa)
fruBFused fructose-specific PTS enzymes: IIA component/HPr component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II FruAB PTS system is involved in fructose transport. (376 aa)
yeaDD-hexose-6-phosphate epimerase-like protein; Belongs to the glucose-6-phosphate 1-epimerase family. (294 aa)
ptsHPhosphohistidinoprotein-hexose phosphotransferase component of PTS system (Hpr); General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the PTS EIIA domain. (85 aa)
pykFPyruvate kinase I (formerly F), fructose stimulated; Protein involved in glycolysis, fermentation and anaerobic respiration. (470 aa)
betBBetaine aldehyde dehydrogenase, NAD-dependent; Involved in the biosynthesis of the osmoprotectant glycine betaine. Catalyzes the reversible oxidation of betaine aldehyde to the corresponding acid. It is highly specific for betaine and has a significantly higher affinity for NAD than for NADP. (490 aa)
acnAAconitate hydratase 1; Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. The apo form of AcnA functions as a RNA- binding regulatory protein which plays a role as a maintenance or survival enzyme during nutritional or oxidative stress. During oxidative stress inactive AcnA apo-enzyme without iron sulfur clusters binds the acnA mRNA 3' UTRs (untranslated regions), stabilizes acnA mRNA and increases AcnA synthesis, thus mediating a post- transcriptional positive autoregulatory switch. AcnA also enhances the stability of the sodA transcript. (891 aa)
cydBCytochrome d terminal oxidase, subunit II; A terminal oxidase that produces a proton motive force by the vectorial transfer of protons across the inner membrane. It is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at low aeration. Generates a proton motive force using protons and electrons from opposite sides of the membrane to generate H(2)O, transferring 1 proton/electron. (379 aa)
manXFused mannose-specific PTS enzymes: IIA component/IIB component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II ManXYZ PTS system is involved in mannose transport. Also functions as a receptor for bacterial chemotaxis and is required for infection of the cell by bacteriophage lambda where it most likely functions as a pore for penetration of lambda DNA. (323 aa)
gapAGlyceraldehyde-3-phosphate dehydrogenase A; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. (331 aa)
crrGlucose-specific enzyme IIA component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II complex composed of PtsG and Crr is involved in glucose transport. The non-phosphorylated EIII-Glc is an inhibitor for uptake of certain sugars such as maltose, melibiose, lactose, and glycerol. Phosphorylated EIII-Glc, however, may be an activator for adenylate cyclase. It is an im [...] (169 aa)
fruAFused fructose-specific PTS enzymes: IIBcomponent/IIC components; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II FruAB PTS system is involved in fructose transport. (563 aa)
pgkPhosphoglycerate kinase; Protein involved in glycolysis and gluconeogenesis; Belongs to the phosphoglycerate kinase family. (387 aa)
mtlDMannitol-1-phosphate dehydrogenase, NAD-dependent; Mannitol-1-phosphate dehydrogenase; Protein involved in carbohydrate catabolic process. (382 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (8%) [HD]