STRINGSTRING
osmE osmE pspG pspG hycE hycE glcB glcB nuoJ nuoJ narH narH narK narK rtcB rtcB fimH fimH nuoM nuoM folA folA nuoI nuoI fnr fnr hypA hypA sufA sufA fimI fimI acs acs glcF glcF hycC hycC nuoL nuoL dmsA dmsA hycA hycA cysJ cysJ yjbG yjbG sufS sufS narG narG cysH cysH sfmH sfmH glnP glnP narI narI hycI hycI hypD hypD ompC ompC gcd gcd narJ narJ fhlA fhlA fimC fimC hypE hypE glnQ glnQ nuoF nuoF yjbH yjbH yjbE yjbE glcD glcD amiA amiA glcG glcG hypC hypC hycH hycH osmY osmY ihfA ihfA dusB dusB nuoH nuoH ptsG ptsG glnH glnH sfmA sfmA hycD hycD yjcH yjcH nuoK nuoK ompR ompR hipA hipA hemF hemF sodA sodA ulaG ulaG fimA fimA hycF hycF sufD sufD cysI cysI patA patA hipB hipB sufE sufE dps dps sufC sufC hycB hycB rtcA rtcA dmsC dmsC fimG fimG sufB sufB hycG hycG envZ envZ hypB hypB ibpB ibpB pflB pflB fimF fimF actP actP dmsB dmsB nuoE nuoE sfmF sfmF nuoG nuoG fimD fimD nuoA nuoA focA focA hns hns mtr mtr glcA glcA glcE glcE nuoC nuoC yjbF yjbF sfmD sfmD ndh ndh sfmC sfmC nuoN nuoN nuoB nuoB uspB uspB fis fis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
osmEOsmotically-inducible lipoprotein; Activator of ntrL gene; Protein involved in transcription activator activity, transcription and response to osmotic stress. (112 aa)
pspGPhage shock protein G; Effector of the phage shock response. (80 aa)
hycELarge subunit of hydrogenase 3 (part of FHL complex); Protein involved in fermentation and anaerobic respiration; Belongs to the complex I 49 kDa subunit family. (569 aa)
glcBMalate synthase G; Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl- CoA) and glyoxylate to form malate and CoA. (723 aa)
nuoJNADH:ubiquinone oxidoreductase, membrane subunit J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 6 family. (184 aa)
narHNitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. (512 aa)
narKNitrate/nitrite transporter; Catalyzes nitrate uptake, nitrite uptake and nitrite export across the cytoplasmic membrane. Functions as a nitrate/nitrite exchanger, and protons are probably not co-transported with the substrate. (463 aa)
rtcBRNA-splicing ligase; GTP-dependent RNA ligase that is involved in tRNA splicing and RNA repair. Joins RNA with 2',3'-cyclic-phosphate or 3'-phosphate ends to RNA with 5'-hydroxy ends. Also acts as a DNA ligase in case of DNA damage by splicing 'dirty' DNA breaks, characterized by 3'- phosphate (or cyclic-phosphate) and 5'-hydroxy ends that cannot be sealed by classical DNA ligases. (408 aa)
fimHMinor component of type 1 fimbriae; Involved in regulation of length and mediation of adhesion of type 1 fimbriae (but not necessary for the production of fimbriae). Adhesin responsible for the binding to D-mannose. It is laterally positioned at intervals in the structure of the type 1 fimbriae. In order to integrate FimH in the fimbriae FimF and FimG are needed. (300 aa)
nuoMNADH:ubiquinone oxidoreductase, membrane subunit M; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4 family. (509 aa)
folADihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. (159 aa)
nuoINADH:ubiquinone oxidoreductase, chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (180 aa)
fnrOxygen-sensing anaerobic growth regulon transcriptional regulator FNR; Global transcription factor that controls the expression of over 100 target genes in response to anoxia. It facilitates the adaptation to anaerobic growth conditions by regulating the expression of gene products that are involved in anaerobic energy metabolism. When the terminal electron acceptor, O(2), is no longer available, it represses the synthesis of enzymes involved in aerobic respiration and increases the synthesis of enzymes required for anaerobic respiration. (250 aa)
hypAProtein involved in nickel insertion into hydrogenases 3; Involved in the maturation of [NiFe] hydrogenases. Required for nickel insertion into the metal center of the hydrogenase. Mediates transfer of nickel, but not zinc, from the low-affinity metal-binding site in the GTPase domain of HypB to HypA. HypA is involved in maturation of hydrogenase 3. It may partially substitute for the function of HybF and vice versa. May act as a scaffold for assembly of the nickel insertion proteins with the hydrogenase precursor protein after delivery of the iron center. Belongs to the HypA/HybF family. (116 aa)
sufAFe-S cluster assembly protein. (122 aa)
fimIFimbrial protein; Protein involved in glycoprotein biosynthetic process. (179 aa)
acsacetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. Acs undergoes a two-step reaction. In the first half reaction, Acs combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. (652 aa)
glcFGlycolate oxidase 4Fe-4S iron-sulfur cluster subunit; Component of a complex that catalyzes the oxidation of glycolate to glyoxylate. Is required for E.coli to grow on glycolate as a sole source of carbon. Is also able to oxidize D-lactate ((R)-lactate) with a similar rate. Does not link directly to O(2), and 2,6-dichloroindophenol (DCIP) and phenazine methosulfate (PMS) can act as artificial electron acceptors in vitro, but the physiological molecule that functions as primary electron acceptor during glycolate oxidation is unknown. (407 aa)
hycCMembrane-spanning protein of hydrogenase 3 (part of FHL complex); Protein involved in fermentation; Belongs to the complex I subunit 4 family. (608 aa)
nuoLNADH:ubiquinone oxidoreductase, membrane subunit L; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 5 family. (613 aa)
dmsADimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. (814 aa)
hycARegulator of the transcriptional regulator FhlA; Regulatory protein for the formate hydrogenlyase system. Could act by directly interacting with FhlA or by preventing the binding of FhlA to the upstream activatory sequence. Also down-regulates expression of the hyf operon. (153 aa)
cysJSulfite reductase, alpha subunit, flavoprotein; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. The flavoprotein component catalyzes the electron flow from NADPH -> FAD -> FMN to the hemoprotein component; In the N-terminal section; belongs to the flavodoxin family. (599 aa)
yjbGExtracellular polysaccharide export OMA protein; To E.coli YmcB. (245 aa)
sufSCysteine desulfurase, stimulated by SufE; Cysteine desulfurases mobilize the sulfur from L-cysteine to yield L-alanine, an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Component of the suf operon, which is activated and required under specific conditions such as oxidative stress and iron limitation. Acts as a potent selenocysteine lyase in vitro, that mobilizes selenium from L- selenocysteine. Selenocysteine lyase activity is however unsure in vivo. Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. Csd [...] (406 aa)
narGNitrate reductase 1, alpha subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction. (1247 aa)
cysHPhosphoadenosine phosphosulfate reductase; Reduction of activated sulfate into sulfite. (244 aa)
sfmHFimA homolog, function unknown; Part of the sfmACDHF fimbrial operon. Could contribute to adhesion to various surfaces in specific environmental niches. Increases adhesion to eukaryotic T24 bladder epithelial cells in the absence of fim genes. (327 aa)
glnPGlutamine transporter subunit; Part of the binding-protein-dependent transport system for glutamine; probably responsible for the translocation of the substrate across the membrane. (219 aa)
narINitrate reductase 1, gamma (cytochrome b(NR)) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The gamma chain is a membrane-embedded heme-iron unit resembling cytochrome b, which transfers electrons from quinones to the beta subunit. (225 aa)
hycIProtease involved in processing C-terminal end of HycE; Protease involved in the C-terminal processing of HycE, the large subunit of hydrogenase 3; Belongs to the peptidase A31 family. (156 aa)
hypDHydrogenase maturation protein; Involved in the maturation of [NiFe] hydrogenases. Involved in the biosynthesis of the Fe(CN)(2)CO cofactor. HypD may act as a scaffold on which the Fe(CN)(2)CO cofactor is formed. In complex with HypC, accepts the cyanide ligand generated by HypF and HypE, and also coordinates the carbon monoxide ligand. Required for the formation of all three hydrogenase isoenzymes (Probable). (373 aa)
ompCOuter membrane porin protein C; Forms pores that allow passive diffusion of small molecules across the outer membrane. (Microbial infection) A mixed OmpC-OmpF heterotrimer is the outer membrane receptor for toxin CdiA-EC536; polymorphisms in extracellular loops 4 and 5 of OmpC confer susceptibility to CdiA- EC536-mediated toxicity; Belongs to the Gram-negative porin family. (367 aa)
gcdGlucose dehydrogenase; GDH is probably involved in energy conservation rather than in sugar metabolism; Belongs to the bacterial PQQ dehydrogenase family. (796 aa)
narJMolybdenum-cofactor-assembly chaperone delta subunit of nitrate reductase 1; Chaperone required for proper molybdenum cofactor insertion and final assembly of the membrane-bound respiratory nitrate reductase 1. Required for the insertion of the molybdenum into the apo-NarG subunit, maybe by keeping NarG in an appropriate competent-open conformation for the molybdenum cofactor insertion to occur. NarJ maintains the apoNarGH complex in a soluble state. Upon insertion of the molybdenum cofactor, NarJ seems to dissociate from the activated soluble NarGH complex, before its association with [...] (236 aa)
fhlAFormate hydrogenlyase transcriptional activator; Required for induction of expression of the formate dehydrogenase H and hydrogenase-3 structural genes. Also activates expression of hyf operon (encodes the silent hydrogenase-4 gene cluster). (692 aa)
fimCPeriplasmic chaperone; Required for the biogenesis of type 1 fimbriae. Binds and interact with FimH. (241 aa)
hypECarbamoyl dehydratase, hydrogenases 1,2,3 maturation protein; Involved in the maturation of [NiFe] hydrogenases. Along with HypF, it catalyzes the synthesis of the CN ligands of the active site iron of [NiFe]-hydrogenases. HypE catalyzes the ATP-dependent dehydration of the carboxamido group attached to its C-terminal cysteine to a cyano group. The cyano group is then transferred from HypE to the HypC-HypD complex or the HybG-HypD complex. (336 aa)
glnQGlutamine transporter subunit; Part of the binding-protein-dependent transport system for glutamine. Probably responsible for energy coupling to the transport system; Belongs to the ABC transporter superfamily. (240 aa)
nuoFNADH:ubiquinone oxidoreductase, chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (445 aa)
yjbHDUF940 family extracellular polysaccharide protein. (698 aa)
yjbEExtracellular polysaccharide production threonine-rich protein. (80 aa)
glcDGlycolate oxidase subunit, FAD-linked; Component of a complex that catalyzes the oxidation of glycolate to glyoxylate. Is required for E.coli to grow on glycolate as a sole source of carbon. Is also able to oxidize D-lactate ((R)-lactate) with a similar rate. Does not link directly to O(2), and 2,6-dichloroindophenol (DCIP) and phenazine methosulfate (PMS) can act as artificial electron acceptors in vitro, but the physiological molecule that functions as primary electron acceptor during glycolate oxidation is unknown ; Belongs to the FAD-binding oxidoreductase/transferase type 4 family. (499 aa)
amiAN-acetylmuramoyl-l-alanine amidase I; Cell-wall hydrolase involved in septum cleavage during cell division. Can also act as powerful autolysin in the presence of murein synthesis inhibitors. (289 aa)
glcGDUF336 family protein; Belongs to the GlcG family. (134 aa)
hypCHydrogenase maturation protein; Involved in the maturation of [NiFe] hydrogenases. Involved in the biosynthesis of the Fe(CN)(2)CO cofactor. HypC delivers iron-bound CO(2) to HypD where reduction to CO probably occurs. In complex with HypD, accepts the cyanide ligand generated by HypF and HypE, and also coordinates the carbon monoxide ligand. Involved in the maturation of the hydrogenase 3. Also participates in the maturation of hydrogenase 1. (90 aa)
hycHHydrogenase 3 maturation protein; Seems to be required for the conversion of a precursor form of the large subunit of hydrogenlyase (HycE) into a mature form. (136 aa)
osmYSalt-inducible putative ABC transporter periplasmic binding protein; Hyperosmotically inducible periplasmic protein; Protein involved in response to osmotic stress. (201 aa)
ihfAIntegration host factor (IHF), DNA-binding protein, alpha subunit; One of the 2 subunits of integration host factor (IHF), a specific DNA-binding protein that functions in genetic recombination as well as in transcriptional and translational control. Binds to hundreds of transcriptionally inactive, AT-rich DNA sites, approximately half its binding sites are in non-coding DNA, which only accounts for about 10% of the genome. Has an essential role in conjugative DNA transfer (CDT), the unidirectional transfer of ssDNA plasmid from a donor to a recipient cell. It is the central mechanism [...] (99 aa)
dusBtRNA-dihydrouridine synthase B; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines; Belongs to the Dus family. DusB subfamily. (321 aa)
nuoHNADH:ubiquinone oxidoreductase, membrane subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (325 aa)
ptsGFused glucose-specific PTS enzymes: IIB component/IIC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II complex composed of PtsG and Crr is involved in glucose transport. Also functions as a chemoreceptor monitoring the environment for changes in sugar concentration and an effector modulating the activity of the transcriptional repressor Mlc. (477 aa)
glnHGlutamine transporter subunit; Involved in a glutamine-transport system GlnHPQ. (248 aa)
sfmAFimA homolog, function unknown; Part of the sfmACDHF fimbrial operon. Could contribute to adhesion to various surfaces in specific environmental niches. Increases adhesion to eukaryotic T24 bladder epithelial cells in the absence of fim genes. (180 aa)
hycDMembrane-spanning protein of hydrogenase 3 (part of FHL complex); Protein involved in fermentation; Belongs to the complex I subunit 1 family. (307 aa)
yjcHDUF485 family inner membrane protein. (104 aa)
nuoKNADH:ubiquinone oxidoreductase, membrane subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (100 aa)
ompRResponse regulator in two-component regulatory system with EnvZ; Member of the two-component regulatory system EnvZ/OmpR involved in osmoregulation (particularly of genes ompF and ompC) as well as other genes. Plays a central role in both acid and osmotic stress responses. Binds to the promoter of both ompC and ompF; at low osmolarity it activates ompF transcription, while at high osmolarity it represses ompF and activates ompC transcription. Involved in acid stress response; this requires EnvZ but not OmpR phosphorylation. Phosphorylated by EnvZ; this stimulates OmpR's DNA-binding abi [...] (239 aa)
hipASerine/threonine-protein kinase toxin HipA; Toxic component of a type II toxin-antitoxin (TA) system, first identified by mutations that increase production of persister cells, a fraction of cells that are phenotypic variants not killed by antibiotics, which lead to multidrug tolerance. Persistence may be ultimately due to global remodeling of the persister cell's ribosomes. Phosphorylates Glu-tRNA-ligase (AC P04805, gltX, on 'Ser-239') in vivo. Phosphorylation of GltX prevents it from being charged, leading to an increase in uncharged tRNA(Glu). This induces amino acid starvation and [...] (440 aa)
hemFCoproporphyrinogen III oxidase; Involved in the heme biosynthesis. Catalyzes the aerobic oxidative decarboxylation of propionate groups of rings A and B of coproporphyrinogen-III to yield the vinyl groups in protoporphyrinogen- IX. (299 aa)
sodASuperoxide dismutase, Mn; Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems; Belongs to the iron/manganese superoxide dismutase family. (206 aa)
ulaGL-ascorbate 6-phosphate lactonase; Probably catalyzes the hydrolysis of L-ascorbate-6-P into 3- keto-L-gulonate-6-P. Is essential for L-ascorbate utilization under anaerobic conditions. Also shows phosphodiesterase activity, hydrolyzing phosphodiester bond in the artificial chromogenic substrate bis-p-nitrophenyl phosphate (bis-pNPP); Belongs to the UlaG family. (354 aa)
fimAMajor type 1 subunit fimbrin (pilin); Fimbriae (also called pili), polar filaments radiating from the surface of the bacterium to a length of 0.5-1.5 micrometers and numbering 100-300 per cell, enable bacteria to colonize the epithelium of specific host organs. (182 aa)
hycFFormate hydrogenlyase complex iron-sulfur protein; Probable electron transfer protein for hydrogenase 3. (180 aa)
sufDComponent of SufBCD Fe-S cluster assembly scaffold; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. Required for the stability of the FhuF protein. (423 aa)
cysISulfite reductase, beta subunit, NAD(P)-binding, heme-binding; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. Belongs to the nitrite and sulfite reductase 4Fe-4S domain family. (570 aa)
patAPutrescine:2-oxoglutaric acid aminotransferase, PLP-dependent; Catalyzes the aminotransferase reaction from putrescine to 2- oxoglutarate, leading to glutamate and 4-aminobutanal, which spontaneously cyclizes to form 1-pyrroline. This is the first step in one of two pathways for putrescine degradation, where putrescine is converted into 4- aminobutanoate (gamma-aminobutyrate or GABA) via 4-aminobutanal, which allows E.coli to grow on putrescine as the sole nitrogen source. Also functions as a cadaverine transaminase in a a L-lysine degradation pathway to succinate that proceeds via cad [...] (459 aa)
hipBAntitoxin of HipAB toxin-antitoxin system; Antitoxin component of a type II toxin-antitoxin (TA) system. Neutralizes the toxic effect of cognate toxin HipA. Also neutralizes the toxic effect of non-cognate toxin YjjJ. Binds to operator sites with the consensus sequence 5-'TATCCN(8)GGATA-3' to repress the hipBA operon promoter ; binding of HipB(2) to DNA induces a 70 degree bend. This forces HipA dimerization, which blocks HipA's active site and thus its toxic action. May play a role in biofilm formation. (88 aa)
sufESulfur acceptor protein; Participates in cysteine desulfuration mediated by SufS. Cysteine desulfuration mobilizes sulfur from L-cysteine to yield L- alanine and constitutes an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Functions as a sulfur acceptor for SufS, by mediating the direct transfer of the sulfur atom from the S-sulfanylcysteine of SufS, an intermediate product of cysteine desulfuration process. Together with the SufBCD complex, it thereby enhances up to 50-fold, the cysteine desulfurase activity of SufS. Component of [...] (138 aa)
dpsFe-binding and storage protein; During stationary phase, binds the chromosome non- specifically, forming a highly ordered and stable dps-DNA co-crystal within which chromosomal DNA is condensed and protected from diverse damages. It protects DNA from oxidative damage by sequestering intracellular Fe(2+) ion and storing it in the form of Fe(3+) oxyhydroxide mineral, which can be released after reduction. One hydrogen peroxide oxidizes two Fe(2+) ions, which prevents hydroxyl radical production by the Fenton reaction. Dps also protects the cell from UV and gamma irradiation, iron and cop [...] (167 aa)
sufCSufBCD Fe-S cluster assembly scaffold protein, ATP-binding protein; Has low ATPase activity. The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. (248 aa)
hycBHydrogenase 3, Fe-S subunit; Probable electron transfer protein for hydrogenase 3. (203 aa)
rtcARNA 3'-terminal phosphate cyclase; Catalyzes the conversion of 3'-phosphate to a 2',3'-cyclic phosphodiester at the end of RNA. The mechanism of action of the enzyme occurs in 3 steps: (A) adenylation of the enzyme by ATP; (B) transfer of adenylate to an RNA-N3'P to produce RNA-N3'PP5'A; (C) and attack of the adjacent 2'-hydroxyl on the 3'-phosphorus in the diester linkage to produce the cyclic end product. The biological role of this enzyme is unknown but it is likely to function in some aspects of cellular RNA processing; Belongs to the RNA 3'-terminal cyclase family. Type 1 subfamily. (338 aa)
dmsCDimethyl sulfoxide reductase, anaerobic, subunit C; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. DmsC anchors the DmsAB dimer to the membrane and stabilizes it. (287 aa)
fimGMinor component of type 1 fimbriae; Involved in regulation of length and mediation of adhesion of type 1 fimbriae (but not necessary for the production of fimbriae). Involved in the integration of FimH in the fimbriae. (167 aa)
sufBComponent of SufBCD Fe-S cluster assembly scaffold; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. (495 aa)
hycGHydrogenase 3 and formate hydrogenase complex, HycG subunit; Hydrogenase activity; Protein involved in fermentation and anaerobic respiration. (255 aa)
envZSensory histidine kinase in two-component regulatory system with OmpR; Member of the two-component regulatory system EnvZ/OmpR involved in osmoregulation (particularly of genes ompF and ompC) as well as other genes. EnvZ functions as a membrane-associated protein kinase that phosphorylates OmpR in response to environmental signals; at low osmolarity OmpR activates ompF transcription, while at high osmolarity it represses ompF and activates ompC transcription. Also dephosphorylates OmpR in the presence of ATP. The cytoplasmic dimerization domain (CDD) forms an osmosensitive core; increa [...] (450 aa)
hypBGTP hydrolase involved in nickel liganding into hydrogenases; Involved in the maturation of [NiFe] hydrogenases. Required for nickel insertion into the metal center of the hydrogenase. Exhibits a low intrinsic GTPase activity, which is essential for nickel insertion. In the presence of GDP, nickel, but not zinc, is transferred from the HypB GTPase domain (G-domain) to HypA. Belongs to the SIMIBI class G3E GTPase family. HypB/HupM subfamily. (290 aa)
ibpBHeat shock chaperone; Associates with aggregated proteins, together with IbpA, to stabilize and protect them from irreversible denaturation and extensive proteolysis during heat shock and oxidative stress. Aggregated proteins bound to the IbpAB complex are more efficiently refolded and reactivated by the ATP-dependent chaperone systems ClpB and DnaK/DnaJ/GrpE. Its activity is ATP-independent. (142 aa)
pflBFormate acetyltransferase 1; Protein involved in anaerobic respiration and cellular amino acid catabolic process. (760 aa)
fimFMinor component of type 1 fimbriae; Involved in regulation of length and mediation of adhesion of type 1 fimbriae (but not necessary for the production of fimbriae). Involved in the integration of FimH in the fimbriae; Belongs to the fimbrial protein family. (176 aa)
actPAcetate transporter; Transports acetate. Also able to transport glycolate. (549 aa)
dmsBDimethyl sulfoxide reductase, anaerobic, subunit B; Electron transfer subunit of the terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. (205 aa)
nuoENADH:ubiquinone oxidoreductase, chain E; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (166 aa)
sfmFFimA homolog, function unknown; Part of the sfmACDHF fimbrial operon. Could contribute to adhesion to various surfaces in specific environmental niches. Increases adhesion to eukaryotic T24 bladder epithelial cells in the absence of fim genes. (171 aa)
nuoGNADH:ubiquinone oxidoreductase, chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (908 aa)
fimDFimbrial usher outer membrane porin protein; Involved in the export and assembly of FimA fimbrial subunits across the outer membrane. (878 aa)
nuoANADH:ubiquinone oxidoreductase, membrane subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (147 aa)
focAFormate channel; Involved in the bidirectional transport of formate; Belongs to the FNT transporter (TC 2.A.44) family. (285 aa)
hnsGlobal DNA-binding transcriptional dual regulator H-NS; A DNA-binding protein implicated in transcriptional repression (silencing). Also involved in bacterial chromosome organization and compaction. H-NS binds tightly to AT-rich dsDNA and inhibits transcription. Binds upstream and downstream of initiating RNA polymerase, trapping it in a loop and preventing transcription. Binds to hundreds of sites, approximately half its binding sites are in non-coding DNA, which only accounts for about 10% of the genome. Many of these loci were horizontally transferred (HTG); this offers the selectiv [...] (137 aa)
mtrTryptophan transporter of high affinity; Involved in transporting tryptophan across the cytoplasmic membrane. (414 aa)
glcAGlycolate transporter; Transports glycolate across the membrane. Can also transport L-lactate and D-lactate. Seems to be driven by a proton motive force. (560 aa)
glcEGlycolate oxidase FAD binding subunit; Component of a complex that catalyzes the oxidation of glycolate to glyoxylate. Is required for E.coli to grow on glycolate as a sole source of carbon. Is also able to oxidize D-lactate ((R)-lactate) with a similar rate. Does not link directly to O(2), and 2,6-dichloroindophenol (DCIP) and phenazine methosulfate (PMS) can act as artificial electron acceptors in vitro, but the physiological molecule that functions as primary electron acceptor during glycolate oxidation is unknown. (350 aa)
nuoCNADH:ubiquinone oxidoreductase, fused CD subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family. (596 aa)
yjbFExtracellular polysaccharide production lipoprotein. (212 aa)
sfmDPutative outer membrane export usher protein; Part of the sfmACDHF fimbrial operon. Could contribute to adhesion to various surfaces in specific environmental niches. Increases adhesion to eukaryotic T24 bladder epithelial cells in the absence of fim genes. Probably involved in the export and assembly of fimbrial subunits across the outer membrane. (867 aa)
ndhRespiratory NADH dehydrogenase 2/cupric reductase; Transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Does not couple the redox reaction to proton translocation. (434 aa)
sfmCPutative periplasmic pilus chaperone; Part of the sfmACDHF fimbrial operon. Could contribute to adhesion to various surfaces in specific environmental niches. Increases adhesion to eukaryotic T24 bladder epithelial cells in the absence of fim genes. (230 aa)
nuoNNADH:ubiquinone oxidoreductase, membrane subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (485 aa)
nuoBNADH:ubiquinone oxidoreductase, chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (220 aa)
uspBProtein involved in response to stress and xenobiotic metabolic process. (111 aa)
fisGlobal DNA-binding transcriptional dual regulator; Activates ribosomal RNA transcription, as well other genes. Plays a direct role in upstream activation of rRNA promoters. Binds to a recombinational enhancer sequence that is required to stimulate hin- mediated DNA inversion. Prevents initiation of DNA replication from oriC. Binds to hundreds of transcriptionally active and inactive AT- rich sites, approximately half its binding sites are in non-coding DNA, which only accounts for about 10% of the genome. Belongs to the transcriptional regulatory Fis family. (98 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (10%) [HD]